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1. Introduction 

In recent years, the noise and vibration of cars have become increasingly important [20, 23, 
29, 30, 35]. A major comfort aspect is the transmission of engine-induced vibrations through 
powertrain mounts into the chassis (see Figure 1). Engine and powertrain mounts are 
usually designed according to criteria that incorporate a trade-off between the isolation of 
the engine from the chassis and the restriction of engine movements. The engine mount is 
an efficient passive means to isolate the car chassis structure from the engine vibration. 
However, the passive means for isolation is efficient only in the high frequency range. 
However the vibration disturbance generated by the engine occurs mainly in the low 
frequency range [8, 19, 23, 30]. These vibrations are result of the fuel explosion in the 
cylinder and the rotation of the different parts of the engine (see Figure 2). In order to 
attenuate the low frequency disturbances of the engine vibration while keeping the space 
and price constant, active vibration means are necessary. 

A variety of control techniques, such as Proportional-Integral-Derivative (PID) or Lead-Lag 
compensation, Linear Quadratic Gaussian (LQG), 2H , H ,  -synthesis and feedforward 
control have been used in active vibration systems [1, 3, 4, 10, 11, 15, 24, 26, 31, 32, 34, 35]. The 
main characteristic of feedforward control is that information about the disturbance source is 
available and is usually realised with the Filtered-X Least-Mean-Squares (Fx-LMS) algorithms. 
However, the disturbance source is assumed to be unknown in feedback control, then different 
strategies of feedback control for vibration attenuation of unknown disturbance exist ranging 
from classical methods to a more advanced methods. Recently, the performance result 
obtained by H  feedback controller with the result obtained by feedforward controller using 
Fx-LMS algorithms for vehicle engine-body vibration system was compared in [30, 35]. 

On the other hand, wavelet theory is a relatively new and an emerging area in mathematical 
research [2]. It has been applied in a wide range of engineering disciplines such as signal 
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processing, pattern recognition and computational graphics. Recently, some of the attempts 
are made in solving surface integral equations, improving the finite difference time domain 
method, solving linear differential equations and nonlinear partial differential equations 
and modelling nonlinear semiconductor devices [5, 6, 7, 13, 16, 17, 18, 21, 27]. 

 
 

Figure 1. Front axis of AUDI A 8 from [22, 30] (Werkbild Audi AG). 

 
Figure 2. Chassis excited by the engine vibration. 
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Orthogonal functions like Haar wavelets (HWs) [13, 16], Walsh functions [7], block pulse 
functions [27], Laguerre polynomials [14], Legendre polynomials [5], Chebyshev functions 
[12] and Fourier series [28], often used to represent an arbitrary time functions, have 
received considerable attention in dealing with various problems of dynamic systems. The 
main characteristic of this technique is that it reduces these problems to those of solving a 
system of algebraic equations for the solution of problems described by differential 
equations, such as analysis of linear time-invariant, time-varying systems, model reduction, 
optimal control and system identification. Thus, the solution, identification and optimisation 
procedure are either greatly reduced or much simplified accordingly. The available sets of 
orthogonal functions can be divided into three classes such as piecewise constant basis 
functions (PCBFs) like HWs, Walsh functions and block pulse functions; orthogonal 
polynomials like Laguerre, Legendre and Chebyshev as well as sine-cosine functions in 
Fourier series [21]. 

In the present paper, we, for the first time, introduce a computational solution to the finite-
time robust optimal control problem of the vehicle engine-body vibration system based on 
HWs. To this aim, mathematical model of the engine-body vibration structure is presented 
such the actuators and sensors used to investigate the robust optimal control are selected to 
be collocated. Moreover, the properties of HWs, Haar wavelet integral operational matrix 
and Haar wavelet product operational matrix are given and are utilized to provide a 
systematic computational framework to find the approximated robust optimal trajectory 
and finite-time H  control of the vehicle engine-body vibration system with respect to a 
H  performance by solving only the linear algebraic equations instead of solving the 
differential equations. One of the main advantages is solving linear algebraic equations 
instead of solving nonlinear differential Riccati equation to optimize the control problem of 
the vehicle engine-body vibration system. We demonstrate the applicability of the technique 
by the simulation results. 

The rest of this paper is organized as fallows. Section 2 introduces properties of the HWs. 
Mathematical model of the engine-body vibration structure is stated in Section 3. Algebraic 
solution of the engine-body system is given in Section 4 and Haar wavelet-based optimal 
trajectories and robust optimal control are presented in Sections 5 and 6, respectively. 
Simulation results of the robust optimal control of the vehicle engine-body vibration system 
are shown in Section 7 and finally the conclusion is discussed. 

The notations used throughout the paper are fairly standard. The matrices rI , 0r  and 0r s  
are the identity matrix with dimension r r  and the zero matrices with dimensions r r  
and r s , respectively. The symbol   and ( )tr A  denote Kronecker product and trace of the 
matrix A , respectively. Also, operator ( )vec X  denotes the vector obtained by putting 
matrix X  into one column. Finally, given a signal ( )x t , 

2
( )x t denotes the 2L  norm of ( )x t ; 

i.e., 

2

2
0

( ) ( ) ( )Tx t x t x t dt


  . 
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2. Properties of Haar Wavelets 

Properties of HWs, which will be used in the next sections, are introduced in this section. 

2.1. Haar Wavelets (HWs) 

The oldest and most basic of the wavelet systems is named Haar wavelet that is a group of 
square waves with magnitude of . 1 . in the interval 0, 1  [6]. In other words, the HWs are 
defined on the interval 0, 1  as 

 





0

1
2

1 1
2

( ) 1, 0, 1 ,

1, 0, ,
( )

1, , 1 ,

t t

for t
t

for t





 
   

  

   (1) 

and 1( ) (2 )j
i t t k    for 1i   and we write 2 ji k   for 0j  and 0 2 jk  . We can 

easily see that the 0( )t  and 1( )t  are compactly supported, they give a local description, at 
different scales j , of the considered function. 

2.2. Function approximation 

The finite series representation of any square integrable function ( )y t  in terms of an 
orthogonal basis in the interval 0, 1

 , namely ˆ( )y t , is given by 

 
1

0
ˆ ( ) ( ) : ( )

m
T

i i m
i

y t a t a t




      (2) 

where 0 1 1: T
ma a a a      and 0 1 1( ) : ( ) ( ) ( ) T

m mt t t t         for 2 jm   and the Haar 

coefficients ia  are determined to minimize the mean integral square error 
1

2

0

( ( ) ( ))T
my t a t dt     and are given by 

 
1

0

2 ( ) ( )j
i ia y t t dt     (3) 

Remark 1. The approximation error, ˆ( ) : ( ) ( )y m y t y t   , is depending on the resolution m  

and is approaching zero by increasing parameter of the resolution.  

The matrix mH can be defined as 

 0 1 1( ), ( ), , ( )m m m m mH t t t          (4) 
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where 1i i
im mt    and using (2), we get 

 0 1 1ˆ ˆ ˆ( ) ( ) ( ) T
m my t y t y t a H    .   (5) 

The integration of the vector ( )m t  can be approximated by 

 
0

( ) ( )
t

m m mt dt P t       (6) 

where the matrix 

1

0 0 0

( ) , ( ) ( ) ( )
t t

T
m m m m mP d t r dr t dt          

represents the integral operator matrix for PCBFs on the interval 0, 1
  at the resolution m . 

For HWs, the square matrix mP  satisfies the following recursive formula [13]: 

 2 2

2 2

1

21
2 0

m m

m m
m

mP H
P

m H

 
 
 
  

   (7) 

with 1
1 2P   and 1 1 ( )T

m mH H diag r
m

   where the matrix mH  defined in (4) and also the 

vector r  is represented by 

2( )

: (1,1,2,2,4,4,4,4, ,( ),( ), ,( ))
2 2 2

m

T

elements

m m mr   


 

for 2m  . For example, at resolution scale 3j  , the matrices 8H  and 8P  are represented  
as 

0 0 0 1 0 7

1 0 1 1 1 7

2 0 2 1 2 7

3 0 3 1 3 7
8

4 0 4 1 4 7

5 0 5 1 5 7

6 0 6 1 6 7

7 0 7 1 7 7

( ) ( ) ( ) 1 1 1 1 1 1 1 1
( ) ( ) ( ) 1 1 1 1 1 1 1 1
( ) ( ) ( ) 1 1 1
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

t t t
t t t
t t t
t t t

H
t t t
t t t
t t t
t t t

  
  
  
  
  
  
  
  

 
      
   
 
   
 
 
 
 
  



1 0 0 0 0
0 0 0 0 1 1 1 1

,
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 
 
 
 
 

  
  
 
  
  

 

and 
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1
21

1
4

4 4
8 1 1

2 4

1
4

8 4
2

4 0
161 1

016 164 0

0

H
H

H
H

P H
P

H H

H



 



 
 

             
 
 
  

 

32 16 8 8 4 4 4 4
16 0 8 8 4 4 4 4
4 4 0 0 4 4 0 0
4 4 0 0 0 0 4 41 ,
1 1 2 0 0 0 0 064
1 1 2 0 0 0 0 0
1 1 0 2 0 0 0 0
1 1 0 2 0 0 0 0

       
    
 
 

    
 
 
  
   

 

for further information see [13, 25]. 

2.3. The product operational matrix 

In the study of time-varying state-delayed systems, it is usually necessary to evaluate the 
product of two Haar function vectors [13]. Let us define 

 ( ) : ( ) ( )
m

T
m mR t t t      (8) 

where ( )mR t  satisfies the following recursive formula 

 2 2

2 2

1

( ) ( ( ))1( )
2 ( ( ( ))) ( ( ))

m m

m m

b

m T
b a

R t H diag t
R t

m H diag t diag H t

 
 
    

   (9) 

with 1 0 0( ) ( ) ( )TR t t t   and 

 2 2

2 2

0 1 1

11

( ) : ( ), ( ), , ( ) ( )

( ) : ( ), ( ), , ( ) .

m m

m m

T

a

T

b m

t t t t t

t t t t

  

  





         

      




   (10) 

Moreover, the following relation is important for solving optimal control problem of time-
varying state-delayed system: 

 ( ) ( )m m m mR t a a t     (11) 
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where 1 0a a  and 

 
2 2

2
2

1

( )

( ) ( )

m m

m
m

b

Tm
b a

a H diag a
a

diag a H diag a H

 
   
  


    (12) 

with 

 2 2

2 2

0 1 1

11

: , , , ( )

: ( ), ( ), , ( ) .

m m

m m

T

a

T

b m

a a a a a t

a a t a t a t





       

     




   (13) 

 
Figure 3. The sketch of engine-body vibration system 

3. Mathematical model description 

A schematic of the vehicle engine-body vibration structure is shown in Figure 3. The 
actuator and sensor used to this control framework are selected to be collocated, since this 
arrangement is ideal to ensure the stability of the closed loop system for a slightly damped 
structure [26]. In our study, only the bounce and pitch vibrations in the engine and body are 
considered [35]. The engine with mass eM and inertia moment eI  is mounted in the body 
by the engine mounts ek  and ec . The front mount is the active mount, the output force of 
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2l 
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which can be controlled by an electric signal. The active mount consists of a main chamber 
where an oscillating mass (inertia mass) is moving up and down. The inertia mass is driven 
by an electro-magnetic force generated by a magnetic coil which is controlled by the input 
current. 

The vehicle body with mass bM  and inertia moment bI  is supported by front and rear tires, 
each of which is modeled as a system consisting of a spring bk  and a damping device bc . 
Therefore, a four degree-of-freedom vibration suspension model shown in Figure 3 can be 
described by the following equations 

 

1 1 1 2 2 4 4

2 2 2 1 1 4 4

2 2 2 2
3 3 3 4 4

2
4

2 2 2 2 2( ) 2( ) ( ) ( )

2( ) 2( ) 2 2 2( ) 2( ) ( )

2 2 2 2 ( )

(( ( 2

e e e e e e e e

b e b e b e e e e

e e e e e

b

M x c x k x c x k x L l c x L l k x f t d t

M x c c x k k x c x k x L l c x L l k x f t

I x l c x l k x l c x l k x l f t

I x L L l

         

           

    

  

   

   

  

 2 2 2 2 2 2
4 4 3

2
3 1 1 2 2

) ) 2 ) (( ( 2 ) ) 2 ) 2

2 2 2 2( ) 2( ) ( )
e b e b e

e e e e e

c L c x L L l k L k x l c x

l k x lc x l k x L l c x L l k x L f t












     


        

 

 

  (14) 

where the states 1 2 3( ), ( ), ( )x t x t x t  and 4( )x t  are the bounces and pitches of the engine and 
body, respectively, where displacement of the chassis 2( ( ))x t is usually taken as an output. 
Input force, ( )f t , is used as the active force to compensate the vibration transmitted to 
vehicle body. Moreover, engine disturbance ( )ed t  can be the excitation, generated by the 
motion up/down of the different parts inside the engine; 

The system Eq. (14) can be represented in the following state-space form  

 1

2

3

( ) ( ) ( ) ( ) ( ), 0,

( )
( ) ( )

( )

f d e fM x t C x t K x t B f t B d t t T

C x t
z t C x t

C f t

       
  
    
    

 

    (15) 

where 4( )x t   is the state; ( )f t   is the control input; ( )ed t   is the disturbance input 
which belongs to 2[0, )L  ; and 3( )z t   is the controlled output with 1 4

1C  , 1 4
2C   

and 3C  is a positive scalar. The state-space matrices are also defined as 

 

0 0 0
0 0 0
0 0 0
0 0 0

e

b

e

b

M
M

M
I

I

 
 
   
 
  

, 2 2

2

2 2 0 2( )
2 2( ) 0 2( )

0 0 2 2

2 2( ) 2 0

e e e

e e b e

e e

e e e

c c L l c
c c c L l c

C
l c l c

lc L l c l c

   
       
    

,  
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1
1

fB
l
L

 
    
 
  

, 

1
0
0
0

dB

 
 
   
 
  

 , 

2 2

2 2 2 2

2 2 0 2( )
2 2( ) 0 2( )

0 0 2 2

2 2( ) 2 ( ( 2 ) ) 2

e e e

e e b e

e e

e e e e b

k k L l k
k k k L l k

K
l k l k

l k L l k l k L L l k L k

   
       
       

. 

Taking displacement of the chassis 2( ( ))x t  as an output then a comparison of the 
displacement response respect to the input force ( )f t  and the external disturbance ( )ed t  in 
the frequency range up to 1 KHz is depicted in Figure 4a) and 4b). Three relevant modes 
occur around the frequencies 1, 5 and 9 Hz, respectively, which represent the dynamics of 
the main degrees of freedom (DOFs) of the system. 

4. Algebraic solution of system equations 

In this section, we study the problem of solving the second-order differential equations of 
the engine-body system (14) in terms of the input control and exogenous disturbance using 
HWs and develop appropriate algebraic equations.  

Based on HWs definition on the interval time 0, 1   , we need to rescale the finite time 
interval 0, fT 

   into 0, 1    by considering ft   ; normalizing the system Eq. (15) with 
the time scale would be as follows 

 ( ) ( ) ( ) ( ) ( )f d eM x C x K x B f B d            (16) 

Now by integrating the system above in an interval 0,   , we obtain 

2 2 2

0 0 0 0 0 0 0

0

( ( ) (0)) ( ) ( ) ( ) ( )

( (0) (0)) .

f f f f f d e

f

M x x C x d K x d d B f d d B d d d

M x C x d

     



           



        

  

      

 
(17) 

By using the Haar wavelet expansion (2), we express the solution of Eq. (15), input force 
( )f   and engine disturbance ( )ed   in terms of HWs in the forms 

 ( ) ( )mx X   ,   (18) 

 ( ) ( )mf F   ,   (19) 
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 ( ) ( )e e md D   ,   (20) 

where 4 mX  , 1 mF   and 1 m
eD   denote the wavelet coefficients of ( )x  , ( )f   

and ( )ed  , respectively. The initial conditions of (0)x  and (0)x  are also represented by 
0(0) ( )mx X    and 0(0) ( )mx X   , where the matrices 4

0 0{ , } mX X   are defined, 
respectively, as 

 0 4 1 4 1

( 1)

: (0) 0 0
m

X x  



 
   
  

  (21) 

 0 4 1 4 1

( 1)

: (0) 0 0
m

X x  



 
   
  

 


   (22) 

Therefore, using the wavelet expansions (18)-(20), the relation (17) becomes  

 2 2 2 2 2 2
0 0 0( ) ( )f m f m f f m f d e m f mM X X C X P K X P B F P B D P M X C X P              (23) 

For calculating the matrix X , we apply the operator (.)vec  to Eq. (23) and according to the 
property of the Kronecker product, i.e. ( ) ( ) ( )Tvec ABC C A vec B  , we have: 

 

2 2
0

2 2 2 2

0 0

( )( ( ) ( )) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

T T
m f m f m

T T
f m f f m d e

T T
f m m

I M vec X vec X P C vec X P K vec X

P B vec F P B vec D

P C vec X P M vec X

       

     

   

   (24) 

Solving Eq. (24) for ( )vec X  leads to 

 1 2 3 0 4 0( ) ( ) ( ) ( ) ( )evec X vec F vec D vec X vec X         (25)  

where the matrices 4
1 2{ , } m m    and 4 4

3 4{ , } m m    are defined as  

 

2 2 2 1 2
1

2 2 2 1 2
2

2 2 1
3

2 2 1
4

( ( ) ( ) ) ( )

( ( ) ( ) ) ( )

( ( ) ( ) ) ( )

( ( ) ( ) ) ( ).

T T T
f f m f m m m f

T T T
f f m f m m m d

T T T
f m f m m m f m

T T T
f m f m m m

P C P K I M P B

P C P K I M P B

P C P K I M I M P C

P C P K I M P M









          

          

            

         

  (26) 

Consequently, using (25) and (26) and the properties of the Kronecker product, the solution 
of system (15) is 

 4( ) ( ( ) ) ( )T
mx I vec X      (27) 
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and it is also clear that to find the approximated solution of the system, we have to calculate 
the inverse of the matrix 2 2( ) ( )T T

f m f m mP C P K I M        with dimension 4 4m m only 
once. 

 
Figure 4. Displacement of the chassis respect to ( )f t  (a) and ( )ed t  (b). 
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5. Optimal control design 

The control objective is to find the optimal control ( )f t  with respect to a quadratic cost 
functional approximately such acts as the active force to compensate the vibration 
transmitted to vehicle body. The quadratic cost functional weights the states and their 
derivatives with respect to time in the cost function as follows:  

 2
1 2 1 2

0

1 1 1( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) )
2 2 2

f
T T T T

f f f fJ x S x x S x x t Q x t x t Q x t R f t dt


             (28) 

where 1 : 4 4S  , 2 : 4 4S  , 1 : 4 4Q   and 2 : 4 4Q   are positive-definite matrices and R  is a 
positive scalar. We can rewrite the cost function (28) as follows: 

 
1

1 1 2
1 1

0

(1) ( )1 [ (1) (1)] ([ ( ) ( )] ( ) )
(1) ( )2 2f f

f f

fT T T T
x x

J x x S x x Q R f d
x x


   


 

 

   
       
       

  
  . (29) 

where 1 2( , )S diag S S  and 1 2( , )Q diag Q Q with the time scale ft   . 

From (15) and the relation ( ) ( )mx X   , where :4X m  denotes the wavelet coefficients 
of ( )x   after its expansion in terms of HFs, we read 

 1 1

( )
( ): ( )

( )
f f

m aug m

x X
X

x X


 

 

   
      
       
    (30) 

where 1
f

aug

X
X

X

 
 
  

 and  

 1( ) ( ) ( )
f

T
T T

augvec X vec X vec X        (31) 

Remark 2. By substituting ( ) ( )mx X    into 
0

( ) (0) ( )x x x t dt


     , we have: 

 0
0

( ) ( ) ( )m m mX X X d


        ,   (32) 

and using (4), we read 0 mX X X P  . Then, by applying the operator of (.)vec  and 
according to the properties of Kronecker product in Appendix A1, we obtain 

 0( ) ( ) ( ) ( )T
m nvec X vec X P I vec X      (33) 
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By substituting the definition (31) in (33) and using the properties of the operator (.)tr  in 
Appendix A1, the cost function (28) is given by 

 
1 2

1 ( ( ) ( ) ( ) ( ))
2

T T
aug m aug mJ vec X vec X vec F vec F   

 
 (34) 

where the matrices 1 : 8 8m m m   and 2 :m m m   are defined as  

1 ( )T T
m f fM S M Q        and 2m f mR M   , respectively,  

and the matrices :mM m m  and :mfM m m  are defined as  

1

0

: ( ) ( )T
m m mM d      and : (1) (1)T

mf m mM    , respectively.  

It is clear that the cost function of (.)J  is a function of 1
i

i i
m m

 
  , then for finding the 

optimal control law, which minimizes the cost functional (.)J , the following necessary 
condition should be satisfied 

 0
( )
J

vec F





   (35) 

By considering ( )augvec X , which is a function of ( )vec F , and using the properties of 

derivatives of inner product of Kronecker product in Appendix A2, we find 

 1 1
1 1 4 1 2[ ( )] ( ) ( )

( ) f

T T
m m aug m

J P I vec X vec F
vec F

 
      


  (36) 

Then the wavelet coefficients of the optimal control law will be in vector form as 

 1 1 1
2 1 1 4 1( ) [ ( )] ( )

f

T T
m m m augvec F P I vec X           (37) 

Consequently, the optimal vectors of ( )vec X  and ( )vec F  are found, respectively, in the 
following forms 

41 1 1 1 1
1 14 1 2 1 1 4 1 2 1 2

4

41 1
1 11 1 4 1 3 0 4 0

4

( ) ( ( [ ( )] ) ( ( ) (
( )

0
[ ( ) ] ) ( ) ( )) ,

( )

f
f

f
f

mT T
Tm m m m e m
m

mT T
Tm m
m

I
vec X I P I vec D

P I

P I vec X vec X
P I

    
 

 
 

 
             
   

 
          
   

(38) 

and 
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41 1 1
1 12 1 1 4 1

4

41 1 1 1
1 14 1 2 1 1 4 1

4

( ) [ ( )] {
( )

( [ ( )] )
( )

f
f

f
f

mT T
Tm m m
m

mT T
Tm m m m
m

I
vec F P I

P I

I
I P I

P I

  
 

   
 

 
       
   

 
         
   

 

 

41 1 1
1 12 1 2 1 1 4 1 3 0

4

4
1 14 0 0

4

0
( ( ) ( [ ( )] ) ( )

( )

0
( )) ( )}.

( )

f
f

f

mT T
Te m m m
m

m
T
m

vec D P I vec X
P I

vec X vec X
P I

  
 

 

 
            
   

 
  
   

 (39) 

Finally, the Haar function-based optimal trajectories and optimal control are obtained 
approximately from Eq. (27) and ( ) ( ) ( )T

mf t t vec F  .  

6. Robust optimal control design 

In this section, an optimal state feedback controller is to be determined computationally 
such that the following requirements are satisfied: 

i. the closed-loop system is asymptotically stable; 
ii.  under zero initial condition, the closed-loop system satisfies 

2 2
( ) ( )ez t d t for any 

non-zero ( ) [0, )ed t    where 0   is a prescribed scalar.  

The control objective is to find the approximated robust optimal control ( )f t  with  
H  performance such ( )f t  acts as the active force to compensate the vibration 
transmitted to vehicle body, i.e. guarantees desired 2L  gain performance. Next, we shall 
establish the H  performance of the system (15) under zero initial condition. To this end, 
we introduce 

 
2 21 1

1 22 2
0

1( ) ( ) ( ) ( ) ( ( ) ( ) ( )) .
2

f

e

T
T T T

f f f fJ x S x x S x z t z t d t dt           (40) 

It is well known that a sufficient condition for achieving robust disturbance attenuation is 
that the inequality 0J   for every 2( ) [0, )ed t L   [33, 36]. Therefore, we will establish 
conditions under which  

 
( ) ( )

( ( ), ( )) 0
e

e
vec F vec D
Inf Sup J vec F vec D    (41) 

From (15), the Eq. (40) can be represented as 
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1
12

1
1 2 2 2 2

1 3
0

(1)1( (1) (1))
(1)

( )
(( ( ) ( )) ( ) ( ))

( )2

f

f e
f

T T

f

f T T

x
J x x S

x

x
x x C C f d d

x


     








 
 
   

 
    
 
 









  (42) 

where ft   , 1 2( , )S diag S S and 1 1 2 2( , )T TC diag C C C C .  

Using the relation ( ) ( )mx X   , we read 

 1 1

( )
( ): ( )

( )
f f

m aug m

x X
X

x X


 

 

   
      
       

    (43) 

where 1
f

aug

X
X

X

 
 
  

 and 

  1( ) ( ) ( )
f

T
T T

augvec X vec X vec X    
   (44) 

Moreover, according to Remark 2 in [18], the following relation is already satisfied between 
( )vec X  and ( )vec X  

 0 4( ) ( ) ( ) ( )T
mvec X vec X P I vec X      (45) 

By using the definition (44) in Eq. (45), we have  

 2 21
32 ( ( )) ( ( ) ( ) ( ))

2
fT T T T

mf aug aug m aug aug m m e eJ tr M X SX tr M X C X tr C M F F tr M D D


      (46) 

Using the property of the Kronecker product, i.e. ( ) ( ) ( ) ( )T T
ptr ABC vec A I B vec C   , 

( ) ( )A C D B A D C B     and ( ) ( ) ( )Tvec ABC C A vec B   , we can write (42) as 

 2 2
1 3 2 2

1 ( ( ) ( ) ( ) ( ) ( ) ( ))
2

T T T
aug m aug m e m eJ vec X vec X C vec F vec F vec D vec D        (47) 

where the matrices 8 8
1

m m
m

  , 2
m m

m
   are defined as 

1 2 ( )f
m mf mM S M C       and   2 2

f
m mM  , respectively. 

It is easy to show that the worst-case disturbance in Eq. (47) occurs when 

 2 1 1 1 2
2 2 2 4 1( ) ( ) ( ) : ( )

f

T T
e m m m aug md augvec D P I vec X vec X                 

  (48) 
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By substituting Eq. (48) into Eq. (47) we obtain 

 
( ) ( ) ( )

( ( ), ( )) ( ( ), ( ))
e

e e
vec F vec D vec F
Inf Sup J vec F vec D Inf J vec F vec D    (49) 

Minimizing the right-hand side of Eq. (49) results in the algebraic relation between wavelet 
coefficients of the robust optimal control and of the optimal state trajectories in the 
following closed form 

 
2 1 1 1 2

3 2 1 1 4 1 2( ) ( ) ( ) ( )

: ( ).
f md

T T T
m m m m md aug

mf aug

vec F C P I vec X

vec X

                  


  (50) 

As a result we have 

 2
1 2 2

( ) ( )
( ( ), ( )) ( ) ( ) ( )

mf md
e

T T T
e aug m m mf m md aug

vec F vec D
Inf Sup J vec F vec D vec X R vec X           (51) 

Consequently, if there exists positive scalar   to the matrix inequality 

 2 2
1 3 2 2 0

mf md

T T
m m mf m mdC              (52) 

then inequality (41) is concluded. 

From the relations above we obtain the robust optimal vectors of ( )vec X  and ( )vec F  after 
some matrix calculations, respectively, in the following forms 

 

42 1 2
1 14 1 2 3 1 2

4

4
1 1 0 4 0

4

( ) ( ( ) ) (( ( )
( )

0
) ( ) ( )) ,

( )

f

f

m
Tm mf md mf md
m

m
T
m

I
vec X I

P I

vec X vec X
P I

   
 

 

 
              
   

 
   
   

  (53) 

and 

 

4 42 1
1 1 1 14 1 2

4 4

4 42
1 1 1 13 1 2 0

4 4

4
1 1 4

4

( ) {( (( ( ) )
( ) ( )

0 0
( ( ) ) ) ( )

( ) ( )

( (
( )

f f

f f

f

m m
T Tmf m mf md
m m

m m
T Tmf md
m m

m
T m
m

I I
vec F I

P I P I

vec X
P I P I

I
I

P I





 
   


   

 

   
          
         

   
           
         

 
  
   

42 1
1 11 2 4 0

4
) ) ( ))}

( )
f

m
Tmf md
m

I
vec X

P I
  

 

 
      
     

(54) 

Finally, the Haar wavelet-based robust optimal trajectories and robust optimal control are 
obtained approximately from Eq. (27) and ( ) ( ) ( )T

mf t t vec F  , respectively.  
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7. Numerical results 

In this section the proposed computational methodology is applied to the vehicle engine-
body vibration system (15) such the exogenous disturbance ( )ed t  is assumed to be a (.)Sin
function at the frequency of 10 Hz . The system parameters, used for the design and 
simulation are given in Tables 1 and 2 in the Appendix B. Table 3 in the Appendix gives the 
pole-zero locations of 8th –order model of the vehicle engine-body vibration system. It is 
clear that the vehicle engine-body vibration system is unstable and has the nonminimum 
phase property. The objective is to find the approximated robust optimal displacement of 
the chassis and robust optimal input force with H  performance using HWs at the finite 
time interval 0, 1   . Moreover, the matrices 4 4

1 1{ , }S S   and the vectors 1C , 2C  and the 
scalar 3C  in the controlled output ( )z t  in Eq. (15) are chosen as 1 2 40S S  , 1 [0, 1, 1, 2]C  , 

2 [3, 1, 0,1]C    and 3 1C  . 

 
Figure 5. Comparison of displacement of the chassis found by HWs at resolution level 5j   (solid) 
and by analytical solution (dashed). 

To compare the approximate solutions 2 ( )x t and ( )f t , found by HWs, to the analytical 
solution found by Theorem 1 in the Appendix C, we choose the performance bound and 
the resolution level equal to 3.15  and 5 , respectively, i.e. 3.15   and 5j  . The time 
curves found are plotted in Figures 5 and 6. It is clear that the effect of the engine 
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disturbance is attenuated onto the displacement of the chassis as the output as well. In 
other words, ( )f t  compensates the vibration transmitted to the chassis. Compare the 
Haar wavelet based solutions to the continuous solutions using the differential Riccati 
equation, the approximate solutions (53) and (54) deliver both, robust control ( )f t  and 
state trajectory ( )x t  in one step by solving linear algebraic equations instead of solving 
nonlinear differential Riccati equation, while accuracy can easily be improved by 
increasing the resolution level j . 

 
Figure 6. Comparison of input force found by HWs at resolution level 5j   (solid) and by analytical 
solution (dashed). 

8. Conclusion 

This paper presented the modelling of engine-body vibration structure to control of bounce 
and pitch vibrations using HWs. To this aim, the Haar wavelet-based optimal control for 
vibration reduction of the engine-body system was developed computationally. The Haar 
wavelet properties were introduced and utilized to find the approximate solutions of 
optimal trajectories and robust optimal control by solving only algebraic equations instead 
of solving the Riccati differential equation. Numerical results were presented to illustrate the 
advantage of the approach.  
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9. Appendix 

9.1. Appendix A 

A1. Some properties of Kronecker product  

Let :A p q , :B q r , :C r s  and :D q t be fixed matrices, then we have: 

( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) .

T

T T
p

T T
p

vec ABC C A vec B

tr ABC vec A I B vec C

tr ABC vec A I B vec C

A C D B A D C B

 

 

 

   

 

A2. Derivatives of inner products of Kronecker product  

Let :A n n  be fixed constants and : 1x n  be a vector of variables. Then, the following 
results can be established: 
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T

T
T

Ax vec A
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Ax A
x

x Ax A x A x
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









 



 

A3. Chain rule for matrix derivatives using Kronecker product  

Let   be a p q  matrix whose entries are a matrix function of the elements of :Y s t , 
where Y  is a function of matrix :m n  . That is, 1( )Y   , where 2( )Y X  . The matrix 
of derivatives of   with respect to   is given by 

( )
( )

T

p n
vec Y I I

vec Y

          
      

. 

9.2. Appendix B 

Parameters Values

bM  1000 [kg]

bI  810 [ 2kg m ] 

bk  20000 [N/m]

bc  300 [N/m/s]

bL  2.5 [m]

Table 1. The vehicle body parameter. 
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Parameters Values 

eM  250 [kg] 

eI  8.10 [ 2kg m ] 

ek  200000 [N/m] 

ec  200 [N/m/s] 

eL  0.5 [m] 

Table 2. The engine parameters. 

 

Zeros Poles 

-6.23 i 111.69 -6.2313 i 111.62 

-0.97 i 62.59 -1.09 i 58.17 

0.03 i 26.86 0.14 i 29.48 

-1.10 -0.29 i 6.19 

Table 3. Pole-zero locations of the 8th -order model. 

9.3. Appendix C 

Theorem 1 (State Feedback) [9]. Consider dynamical system  

1 2( ) ( ) ( ) ( )
( ) ( ) ( )

x t A x t B u t B w t
z t C x t Du t
   
  


 

under assumption 1( , , )A B C is stabilizable. For a given 0  , the differential Riccati 
equation  

2
2 2 1 1( )T T T TX A X X A X B B B B X C C       

has a positive semi-definite solution ( )X t  such that 2
1 1 2 2( ) ( )T TA B B B B X t    is 

asymptotically stable. Then the control law 1( ) ( ) ( ) : ( ) ( )Tu t B X t x t K t X t    is stabilizing and 
satisfies 

2 2
( ) ( )z t w t . 
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