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Abstract

In the large-scale distributed antenna system (LS-DAS), a large number of antenna
elements are densely deployed in a distributed way over the coverage area, and all the
signals are gathered at the cloud processor (CP) via dedicated fiber links for globally
joint processing. Intuitively, the LS-DAS can inherit the advantage of both large-scale
multiple-input-multiple-output (MIMO) and network densification; thus, it offers enor-
mous gains in terms of both energy efficiency (EE) and spectral efficiency (SE). However,
as the number of distributed antenna elements (DAEs) increases, the overhead for
acquiring the channel state information (CSI) will increase accordingly. Without perfect
CSI at the CP, which is the majority situation in practical applications due to limited
overhead, the claimed gain of LS-DAS cannot be achieved. To solve this problem, this
chapter considers a more practical case with only the long-term CSI including the path
loss and shadowing known at the CP. As the long-term channel fading usually varies
much more slowly than the short-term part, the system overhead can be easily con-
trolled under this framework. Then, the EE-oriented and SE-oriented power allocation
problems are formulated and solved by fractional programming (FP) and geometric
programming (GP) theories, respectively. It is observed that the performance gain with
only long-term CSI is still noticeable and, more importantly, it can be achieved with a
practical system cost.

Keywords: large-scale distributed antenna system (LS-DAS), energy efficiency (EE),
spectral efficiency (SE), long-term channel state information (CSI), fractional program-
ming (FP), geometric programming (GP)

1. Introduction

The large-scale distributed antenna system (LS-DAS) is a promising candidate technol-
ogy for the future 5G wireless network. In a LS-DAS, as shown in Figure 1, a large
number of distributed antenna elements (DAEs) are densely scattered over the coverage
area, and the signals from/to all the DAEs are gathered via dedicated fiber links, at the
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cloud processor (CP), where the globally joint processing is performed [1, 2]. On one
hand, the LS-DAS can be regarded as a special large-scale multiple-input-multiple-out-
put (MIMO) system, as shown in Figure 2, with distributed deployment of antenna ele-
ments. On the other hand, it can be regarded as a special heterogeneous small-cell
network, as shown in Figure 3, with global inter-cell coordination. As a consequence, the

Figure 1. Illustration of a large-scale distributed antenna system.

Figure 2. Illustration of a traditional large-scale MIMO system.
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LS-DAS can inherit the advantage of both large-scale MIMO and network densification.
Notably, existing studies have already shown that it can offer enormous gains in terms
of both energy efficiency (EE) [3, 4] and spectral efficiency (SE) [5, 6].

Due to the distributed deployment of antenna elements, the average access distance of all the
mobile terminals (MTs) is reduced. Moreover, due to the global coordination among all the
DAEs, the multiplexing gain and diversity gain offered by multiple antenna elements can be
obtained [7–9]. These are the main reasons for high EE and SE offered by a LS-DAS. However,
to exploit the benefit of LS-DASs, the channel state information (CSI) is crucially required at
the CP [10, 11]. Without perfect CSI, the interference among different DAEs will become
intractable, and accordingly the system performance will be severely degraded.

In practical applications, the acquisition of full CSI would require an overwhelming amount of
system overhead, including the training symbols for channel estimation, the system backhaul
for CSI exchanging, and so on. Due to this point, in the literature, some researchers have
shown that the system cost of CSI is quite an important issue for evaluating and designing
multi-antenna systems. For example, in [12], it has been proved that the optimal number of
transmit antennas is equal to the channel coherence interval (CCI). Thus, it will become useless
to utilize more antennas than CCI under given channel dynamics. The authors of [13] particu-
larly focused on the cost of CSI for network MIMO systems; they have shown that the optimal
number of base stations that can be coordinated exists, which is mainly determined by the CCI
in both time and frequency domains. Particularly, for the massive MIMO in frequency division
duplex (FDD) mode, it is also very challenging to acquire full CSI at the base station side. In
[14], a one-bit feedback scheme was proposed by using a set of predefined precoding vectors.
The scheme only performs well in some specific cases, e.g., the multi-antenna channel follow-
ing one-ring model.

Figure 3. Illustration of a traditional heterogeneous small-cell network.
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In this chapter, we try to liberate the implementation of LS-DAS from the acquisition of full
CSI. We note that the channel of a LS-DAS usually consists of path loss, shadowing, and
Rayleigh fading [7–9]. Compared with Rayleigh fading, path loss and shadowing vary much
more slowly and can be estimated in a much longer interval than CCI. Thus, it requires a
controllable system overhead. In some of the existing studies, path loss and shadowing are
classified as large-scale CSI [4, 6]. To distinguish from the large-scale in LS-DAS, for clarity, we
here use long-term CSI to identify path loss and shadowing. With the knowledge of long-term
CSI, the achievable EE and SE will be particularly investigated in the sequel. Different from the
reported EE and SE with perfect CSI assumption, which actually cannot be achieved in most
practice, our results can be approached with a limited system cost; thus, it is of great signifi-
cance for the realistic implementation of LS-DASs.

In order to control the computational complexity at the CP, we first divide the whole system
into a number of virtual cells (VCs) [5, 15]. As shown in Figure 4, the VC is established in a
user-centric manner, i.e., each MT chooses only a subset of the surround DAEs for its data
transmission. Then, each MT is served by its own VC under the interference from other VCs.
To control the interference, the signals of all the VCs are designed in a coordinated fashion at
the CP while maximizing the EE or SE of the system. Given VCs, the EE-oriented and the SE-
oriented power allocation problems are formulated based on long-term CSI only, both of
which are non-convex problems, and thus are difficult to solve. By adopting the fractional
programming (FP) theory and the geometric programming (GP) theory, we propose two
iterative power allocation algorithms. These algorithms can derive the locally optimal EE and
SE of the system, respectively. It is further observed from the simulation results that the

Figure 4. Illustration of VCs.
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performance gain with only long-term CSI is still remarkable, while it can be achieved with a
practical system cost.

The rest of this chapter is organized as follows. The system model of a multiuser LS-DAS is
described in Section 2. In the subsequent Sections 3 and 4, the achievable EE and SE are
discussed, respectively. Then, we show the simulation results to verify the superiority of the
proposed schemes in Section 5. Finally, the conclusion of this chapter is drawn in Section 6.

Notations: In denotes an identity matrix with a dimension of n, and O is a zero matrix. ð:ÞH
represents the conjugate transpose operation. ℂM·N denotes the set of complexM ·Nmatrices,
and CN represents a complex Gaussian distribution. Eð:Þ represents the expectation operator,
and trð�Þ represents the trace operator.

2. System Model

We consider a LS-DAS with K MTs. Without loss of generality, all the VCs consist of N DAEs,
and the number of antenna elements equipped at each MT is M.

For MT k, the received signal is

yðkÞ ¼ HðkÞxðkÞ þ ∑
K

i¼1;i≠k
Hðk;iÞxðiÞ þ nðkÞ; (1)

where HðkÞ∈ℂM ·N; k ¼ 1; 2; :::;K; represents the channel between the DAEs in VC k and MT k,

Hðk;iÞ∈ℂM·N; k ¼ 1; 2; :::;K; i ¼ 1; 2; :::;K; denotes the channel between the DAEs in VC i and
MT k, xðiÞ∈ℂN · 1; i ¼ 1; 2; :::;K, is the transmitted signal vector for MT i, and
nðkÞ∈ℂM· 1; k ¼ 1; 2; :::;K, denotes the additive white Gaussian noise with distribution
CN ð0;σ2IMÞ.

E xðkÞxðkÞ
H

h i
¼ PðkÞ ¼

pðkÞ1
⋱

pðkÞN

2
4

3
5; k ¼ 1; :::;K: (2)

Assuming a total transmit power constraint PðkÞ
max for MT k, we set

∑
N

n¼1
pðkÞn ≤PðkÞ

max: (3)

The channel matrix can be modeled as

Hðk;iÞ ¼ Sðk;iÞLðk;iÞ; (4)

where Sðk;iÞ and Lðk;iÞ reflect the short-term fading and the long-term fading, respectively.

Particularly, the entries of Sðk;iÞ are all independent and identically distributed (i.i.d.) circular
symmetric complex Gaussian variables following CN ð0; 1Þ distribution.
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Lðk;iÞ ¼
lðk;iÞ1

⋱
lðk;iÞN

2
4

3
5; (5)

with

lðk;iÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Dðk;iÞ

n

�−γ
Sðk;iÞn

r
; n ¼ 1; 2; :::;N; (6)

where Dðk;iÞ
n is the transmission distance between the DAE n in VC i and MT k, and γ is the path

loss exponent, and Sðk;iÞn represents the shadow fading caused by large objects such as tall
buildings or walls.

3. Achievable Ee

Given perfect CSI, the authors of [16] have proposed an energy-efficient power allocation
scheme for traditional DASs. In [17], further taking the inter-VC interference into consider-
ation, an iterative power allocation scheme was presented to improve the EE of a LS-DAS, via
applying the successive Taylor expansion method. In contrast, we investigate the achievable
EE with the long-term CSI only in this section.

First of all, the sum rate of the system can be derived according to Eq. (1) as

R ¼ ∑
K

k¼1
log2 det IM þHðkÞPðkÞHðkÞH

σ2k

 !
; (7)

where

σ2k ¼ ∑
i¼1; i≠k K

∑
N

n¼1
½lðk;iÞn �2pðiÞn þ σ2; (8)

is the total interference-plus-noise power at MT k.

When only the long-term CSI is known, the average sum rate can be calculated via taking

expectation over the short-term channel fading Ω ¼ fSðkÞjk ¼ 1;…;Kg as

R ¼ ∑
K

k¼1
EΩ log2 det IM þHðkÞPðkÞHðkÞH

σ2k

 !" #
: (9)

Then, the EE of the system, denoted as η, can be derived as
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η ¼ R

ρ ∑
K

k¼1
∑
N

n¼1
pðkÞn þ Pc

; (10)

where

ρ ¼ ε
γ
; (11)

with ε and γ denoting the peak-to-average power ratio and the power amplifier efficiency,
respectively, and Pc denotes the circuit power consumption [4].

In order to investigate the achievable EE under this framework, we formulate the following
optimization problem:

max η (12a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (12b)

pðkÞn ≥ 0; k ¼ 1;…; K; n ¼ 1,…; N: (12c)

Because of the non-convexity of R, the problem shown in Eq. (12) is a complicated non-convex
problem [18]. To simplify it, we introduce an upper bound to the objective function as

η̂ ¼

∑
K

k¼1
log2 det IN þ

MPðkÞ
�
LðkÞ
�2

σ2k

0
B@

1
CA

ρ ∑
K

k¼1
∑
N

n¼1
pðkÞn þ Pc

; (13)

the numerator of which is an upper bound to R [10]. Accordingly, the problem in Eq. (12) can
be reformulated as

max η̂ (14a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (14b)

pðkÞn ≥ 0; k ¼ 1;…; K; n ¼ 1,…; N: (14c)

which is simpler than Eq. (12). However, it is still non-convex [18]. To further solve the
problem in Eq. (14), we express
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η̂ ¼ f 1−f 2

ρ ∑
K

k¼1
∑
N

n¼1
pðkÞn þ Pc

; (15)

where

f 1 ¼ ∑
K

k¼1
log2 det

�
σ2kIN þMPðkÞLðkÞ2

�
; (16a)

f 2 ¼ ∑
K

k¼1
Nlog2ðσ2kÞ; (16b)

both of which are clearly concave functions.

We find that if the numerator of η̂, i.e., f 1−f 2, can be transformed into a concave form, the
problem in Eq. (14) can be recast as a quasi-concave fractional programming problem, further
considering the linearity of its denominator [19]. Toward this end, we linearize f 2 by applying
the first-order Taylor expansion at a given point P as

~f 2ðPjPÞ ¼ ∑
K

k¼1
Nlog2

�
σ2kðPÞ

�
þ log2ðeÞ ∑

K

k¼1

N
σ2kðPÞ

trðGk½P−P�Þ; (17)

where P ¼ fPð1Þ;…;PðkÞg and

Gk ¼ diagfGðk;1Þ;…;Gðk;KÞg; (18a)

Gðk;iÞ ¼
�
Lðk;iÞ

�2
; k≠i; k; i ¼ 1;…;K; (18b)

Gðk;kÞ ¼ O: (18c)

By substituting ~f 2ðPjPÞ for f 2ðPÞ, the problem in Eq. (14) can be approximated as

max η ¼ f 1ðPÞ−~f 2ðPjPÞ
ρ ∑

K

k¼1
∑
N

n¼1
pðkÞn þ Pc

(19a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (19b)

pðkÞn ≥ 0; k ¼ 1; …; K; n ¼ 1,…; N; (19c)

whose objective function is fortunately fractional with concave numerator and convex denomi-
nator [18]. Adopting the FP theory, the problem in Eq. (19) can be optimally solved in an iterative
way. In our previous paper [4], we have shown in detail how to solve the problem in Eq. (19). In
the following, for brevity, we just present the basic idea and procedure of the iterative algorithm.
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We use t≥1 and s≥1 to denote the successive Taylor expansion iteration step and the FP iteration
step, respectively. After introducing a positive variable ω, the following concave optimization
problem can be formulated

max vðPjPt−1;s−1;ωÞ (20a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (20b)

pðkÞn ≥0; k ¼ 1; …; K; n ¼ 1,…; N; (20c)

where

vðPjPt−1;s−1;ωÞ ¼ f 1ðPÞ−~f 2ðPjPt−1;s−1Þ−ωρ ∑
K

k¼1
∑
N

n¼1
pðkÞn −ωPc: (21)

Further define

VðωÞ ¼ max vðPjPt−1;s−1;ωÞ; (22)

Algorithm 1 Iterative power allocation for maximizing EE.

1. Initialization: P0 ¼ diagfPð1Þ
0 ;⋯;PðKÞ

0 g with PðkÞ
0 ¼ PðkÞ

max
N IN , k ¼ 1; :::;K, PðkÞ

0;0 ¼ PðkÞ
0 , k ¼ 1; :::;K,

ω ¼ 0, and ξ ¼ 1· 10−3, δ ¼ 1 · 10−3, t ¼ 1;s ¼ 1;

2. Solve Eq. (20), and denote the obtained power matrix by PðkÞ
0;1, k ¼ 1; :::;K, set PðkÞ

1 ¼ PðkÞ
0;1,

k ¼ 1; :::;K, and P1 ¼ diagfPð1Þ
1 ;⋯;PðKÞ

1 g;
3. while jη̂ðPtÞ−η̂ðPt−1Þj=η̂ðPt−1Þ > ξ do

4. t ¼ tþ 1, s ¼ 1, and ω ¼ 0;

5. PðkÞ
t−1;0 ¼ PðkÞ

t−1, k ¼ 1; :::;K;

6. Solve Eq. (20), derived VðωÞ and denote the obtained power matrix by PðkÞ
t−1;1, k ¼ 1; :::;K;

7. while VðωÞ > δ do

8. ω ¼ η
�
PðkÞ
t−1;sjPðkÞ

t−1

�
;

9. s ¼ sþ 1;

10. Solve Eq. (20), derived VðωÞ and denote the obtained power matrix by PðkÞ
t−1;s, k ¼ 1; :::;K;

11. end while
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12. PðkÞ
t ¼ PðkÞ

t−1;s, k ¼ 1; :::;K, and Pt ¼ diagfPð1Þ
t ;⋯;PðKÞ

t g;

13. end while

14. Output: Pt.

we can propose an iterative power allocation algorithm for maximizing EE, as described in
Algorithm 1. By adopting Algorithm 1, the achievable EE with long-term CSI only can be
derived with low computational complexity [4].

4. Achievable Se

For traditional single-cell DASs, the achievable SE was studied in [20, 21], which by consid-
ering the general DAS with random antenna layout has identified that DAS outperforms
colocated multi-antenna systems. In [22], the authors have taken the inter-cell interference
into consideration, and they have presented a close-form expression for the achievable EE in
a multi-cell environment. However, this work has not considered interference coordination.
The authors of [23] took a step further; they have put forward a coordinated power alloca-
tion scheme for dealing with the inter-cell interference. Nevertheless, the result was derived
by approximately treating the inter-cell interference as Gaussian noise, and thus it is only
applicable to the low signal-to-noise-ratio (SNR) situation. In a recent work, the SE of single-
cell multiuser LS-DAS was studied [24]. It however also has not considered interference
coordination, which is in general inevitable in most practical applications. Different from all
the above existing studies, in this section, we investigate the achievable SE of a LS-DAS with
long-term CSI only.

With the target of average system sum rate maximization, the problem of SE-oriented power
allocation can be formulated as

max R (23a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (23b)

pðkÞn ≥0; k ¼ 1; :::; K; n ¼ 1; :::;N: (23c)

As R is non-convex, this problem is complicatedly non-convex [18]. Besides, the objective
function is actually in an integral form as a result of the expectation operator in R, and it
cannot be directly expressed in a compact closed form, which renders it even more challenging
to obtain the optimal solution of Eq. (23).

We try to simplify the formulated problem. To this end, a closed-form approximation for the
average system sum rate R is leveraged as
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Rap ¼ ∑
K

k¼1
∑
N

n¼1
log2 1þ ½lðkÞn �2pðkÞn ϒ−1

k M
σ2k

 !

þM ∑
K

k¼1
log2ðϒ kÞ−M ∑

K

k¼1
log2eð1−ϒ−1

k Þ;
(24)

where ϒ k satisfies

ϒ k ¼ 1þ ∑
N

n¼1

½lðkÞn �2pðkÞn

σ2k þ ½lðkÞn �2pðkÞn ϒ −1
k M

; k ¼ 1; ::;K: (25)

This approximation can be derived through using the random matrix theory [10], and the
introduced parameter ϒ k can be calculated in an iterative way as shown in the following
Algorithm 2.

According to the existing studies [10], Rap is quite a precise approximation for R. Therefore,
we directly use it as the objective function, and the joint power allocation problem can be
recast as

max Rap (26a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (26b)

pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N; (26c)

which is much simplified. However, due to the non-convexity of Rap [18], the new problem in
Eq. (26) is still non-convex. In the following, we explore the achievable SE of the system by
contriving an iterative algorithm, which can find a locally optimal solution of Eq. (26) effi-
ciently.

To eliminate the effect of the introduced parameters ϒ1, ϒ2, :::, ϒK, we first fix ϒ1, ϒ 2, :::, ϒK as
constants. Then we can equivalently simplify the objective function in Eq. (26) as

R
0

ap ¼ ∑
K

k¼1
∑
N

n¼1
log2 1þ ½lðkÞn �2pðkÞn ϒ−1

k M
σ2k

 !
: (27)

As log2ð�Þ is monotonically increasing, the problem shown in Eq. (26) can be equivalently
transformed into

min ∏
K

k¼1
∏
N

n¼1

σ2k
σ2k þ ½lðkÞn �2pðkÞn ϒ−1

k M
(28a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (28b)
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pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N: (28c)

Define

f n;kðPÞ ¼ σ2kðPÞ þ ½lðkÞn �2pðkÞn ϒ −1
k M ¼ ∑

K

i¼1;i≠k
∑
N

j¼1
gðk;iÞj ðPÞ þ gðkÞn ðPÞ þ σ2;

n ¼ 1; :::;N;k ¼ 1; :::;K;
(29)

where

gðk;iÞj ðPÞ ¼ ½lðk;iÞj �2pðiÞj ; k≠i; (30)

gðkÞn ðPÞ ¼ ½lðkÞn �2pðkÞn ϒ −1
k M; (31)

and then, given a feasible point P, an approximation of f n;kðPÞ can be obtained as

~f n;kðPjPÞ ¼ ∏
K

i¼1;i≠k
∏
N

j¼1

gðk;iÞj ðPÞ
αðk;iÞ
n;j

0
@

1
A

αðk;iÞ
n;j

0
B@

1
CA·

gðkÞn ðPÞ
αðkÞ
n;n

 !αðkÞ
n;n

·
σ2

α0
n;k

 !α0
n;k

; (32)

where

αðk;iÞ
n;j ¼ gðk;iÞj ðPÞ=f n;kðPÞ; (33)

αðkÞ
n;n ¼ gðkÞn ðPÞ=f n;kðPÞ; (34)

α0
n;k ¼ σ2=f n;kðPÞ: (35)

By using the inequality of arithmetic and geometric means, it is easy to obtain that

f n;kðPÞ≥~f n;kðPjPÞ: (36)

The equality holds if and only if

P ¼ P: (37)

By replacing f n;kðPÞ with ~f n;kðPjPÞ, the problem in Eq. (28) can be recast as

min ∏
K

k¼1
∏
N

n¼1

σ2k
~f n;k

ðPÞ (38a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (38b)

pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N; (38c)
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which is a good approximation for the original problem in the neighborhood of P. More
importantly, it is a standard GP problem [25]; thus, it can be efficiently solved via convex
optimization tools, e.g., the interior point algorithm [18].

We use t≥1 and s≥1 to denote the updating iteration step of ϒ k and the arithmetic-to-geometric
approximation iteration step, respectively. Then the following convex optimization problem is
derived

min ∏
K

k¼1
∏
N

n¼1

σ2k
~f n;k

ðPjPs−1;ϒ t
kÞ (39a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (39b)

pðkÞn ≥0;k ¼ 1; :::;K;n ¼ 1; :::;N: (39c)

Accordingly, we propose an iterative power allocation algorithm for maximizing SE as
described in Algorithm 2. In the algorithm, ϒ k;k ¼ 1; :::;K and P are updated in an alternate
way. By adopting the algorithm, the achievable SE with long-term CSI only can be derived
with low computational complexity [6].

5. Simulation Results

In this section, we illustrate the EE and SE performance of the proposed schemes by simula-
tions. To be general, we consider a circular coverage area with a radius of 500 m. There are 20
DAEs randomly deployed in the coverage area with a two-dimension uniform distribution.
The number of MTs is set as K ¼ 3. The number of antenna elements equipped at each MT is
set as M ¼ 3. In order to fully exploit the spatial degree of freedom of each MT and, in the
meantime, well control the system complexity, we set the size of each VC as N ¼ M ¼ 3. As for
the channel parameters, we set γ ¼ 4 (path loss exponent), σ2 ¼ −107 dBm (noise power), and
the shadowing standard deviation is 8 dB. Without loss of generality, we consider the same

transmit power constraint for all MTs, i.e., Pð1Þ
max ¼ Pð2Þ

max ¼ Pð3Þ
max. Particularly, 100 randomly

selected system topologies are considered in the simulation, and the averaged results are
shown in the following.

First, the achievable EE of different schemes is compared in Figure 5. Both the scheme
presented in reference [16] and the simplest equal power allocation scheme are considered. It
can be seen from Figure 5 that the proposed scheme outperforms the other ones, especially
when the transmit power constraint goes larger. The scheme proposed in [16] has not consid-
ered interference coordination; thus, in a multi-VC setting, its performance is worse than the
proposed scheme, although it has assumed the perfect CSI as the CP. In contrast, although
using the long-term CSI only, the proposed scheme can still offer the highest EE performance.
We can also observe from Figure 5 that the key point for high EE is to set proper transmit
power, i.e., when the transmit power has reached a corresponding point, it should no longer be
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increased even though the power consumption constraint goes larger. Intuitively, this observa-
tion can be explained by the fact that when the transmit power goes larger, the sum rate gain
will become smaller and smaller due to the impact of interference; thus, the EE of the scheme
will fall instead of rising.

Algorithm 2 Iterative power allocation for maximizing SE.

1. Initialization: Set P0 ¼ f½pð1Þ1 �0;½pð1Þ2 �0; :::;½pðKÞN �0g, where ½pðkÞn �0 ¼ PðkÞ
max
N , k ¼ 1; :::;K, n ¼ 1; :::;N,

and ε ¼ 1· 10−4, δ ¼ 1 · 10−3, s ¼ 1;

2. for k ¼ 1 to K do

3. t ¼ 1;

4. ϒ 0
k ¼ 1;

5. ϒ 1
k ¼ 1þ ∑N

n¼1
½lðkÞn �2½pðkÞn �0

σ2k ðP0Þþ½lðkÞn �2½pðkÞn �0½ϒ0
k �−1M

;

6. while jϒ t
k−ϒ

t−1
k j > ε do

7. t ¼ tþ 1;

8. ϒ t
k ¼ 1þ ∑N

n¼1
½lðkÞn �2 ½pðkÞn �0

σ2k ðP0Þþ½lðkÞn �2½pðkÞn �0½ϒ t−1
k �−1M;

9. end while

10. Output ϒ
0
k ¼ ϒ t

k;k ¼ 1; :::;K:

11. end for

Figure 5. Comparison of achievable EE by different schemes.
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12. Solve Eq. (39) with ϒ k ¼ ϒ
0
k;k ¼ 1; :::;K, and denote the obtained power matrix by P1;

13. while jRapðPsÞ−RapðPs−1Þj=RapðPs−1Þ > δ do

14. for k ¼ 1 to K do

15. t ¼ 1;

16. ϒ 0
k ¼ 1;

17. ϒ 1
k ¼ 1þ ∑N

n¼1
½lðkÞn �2 ½pðkÞn �s

σ2k ðPsÞþ½lðkÞn �2½pðkÞn �s½ϒ0
k �−1M

;

18. while jϒ t
k−ϒ

t−1
k j > do

19. t ¼ tþ 1;

20. ϒ t
k ¼ 1þ ∑N

n¼1
½lðkÞn �2½pðkÞn �s

σ2k ðPsÞþ½lðkÞn �2½pðkÞn �s½ϒ t−1
k �−1M;

21. end while

22. Output ϒ
0
k ¼ ϒ t

k;k ¼ 1; :::;K:

23. end for

24. s ¼ sþ 1;

25. Solve Eq. (39) with ϒ k ¼ ϒ
0
k;k ¼ 1; :::;K, and denote the obtained power matrix by26: Ps;

26. end while

27. Output: Ps.

Figure 6. Comparison of achievable SE by different schemes.
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Then, we evaluate the performance of the proposed scheme in terms of achievable SE. The
scheme presented in reference [23] and equal power allocation scheme are taken into compar-
ison. The results are shown in Figure 6. We can find that the proposed scheme performs the
best among the three schemes. The scheme presented in [23] is only applicable to the low SNR
condition; thus, the performance gas between it and the proposed scheme goes larger when
the transmit power constraint increases, which implies that the impact of inter-VC interference
becomes bigger. The results identify that it is still effective for enhancing the SE of the system
when only the long-term CSI is available.

Figure 7. Histogram of the number of iteration steps for Algorithm 1.

Figure 8. Histogram of the number of iteration steps for Algorithm 2.
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According to the discussion in [4, 6], the proposed Algorithms 1 and 2 are assured to converge
to a local optimum. The histogram of the number of iteration steps is illustrated in Figures 7
and 8, for Algorithms 1 and 2, respectively. We can observe from the figures that 15 iteration
steps are enough for the convergence of Algorithm 1 and that for Algorithm 2 is 11.

6. Conclusions

The LS-DAS is a promising candidate technology for the future 5G wireless network, due to its
remarkable gains in terms of both EE and SE. In this chapter, we try to liberate the implemen-
tation of LS-DAS from the acquisition of full CSI. With the knowledge of long-term CSI,
including the path loss and shadow fading, the achievable EE and SE have been investigated.
Different from the reported EE and SE with perfect CSI condition, which actually cannot be
achieved in most practice, our results can be achieved with a limited system cost; thus, it is of
great significance for the realistic implementation of LS-DASs. We also use the concept of VC
to control the computational complexity at the CP. Accordingly, we design the transmit power
of all the VCs in a coordinated fashion, to control the interference and finally maximize EE or
SE of the system. Particularly, the EE-oriented and the SE-oriented power allocation problems
are formulated based on long-term CSI only, both of which are non-convex problems, and thus
are difficult to solve. By adopting the FP theory and the GP theory, we propose two iterative
power allocation algorithms. These algorithms can derive the locally optimal EE and SE of the
system, respectively. It is further observed from the simulation results that the performance
gain with only long-term CSI is still remarkable, while it can be achieved with a practical
system overhead.
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