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1. Introduction

Impulse response functions (IRFs) have been largely used in experimental modal analysis in
order to extract the modal parameters (natural frequencies, damping factors and modal forms)
in different areas. IRFs occupy a prominent place in applications of aeronautical, machinery
and automobile industries, mainly when the system has coupled modes. Additionally, IRFs
have practical advantages for use in control theory for many reasons, e.g.:

• For very complex systems, they can be determined by experimental tests, or using data
of input and output measured by load cells or accelerometers, or directly with an impact
hammer.

• The identified model is essentially nonparametric.

• Normally a finite impulse response (FIR) model of the structure is employed. Thus, the
stability can be warranted a priori. Additionally, the many adaptive controlers are based
on an FIR structure and it is easy to
perform a recursive estimation.

In general, IRFs can be identified by impact tests with an instrumented hammer or by using
numerical algorithms implemented in commercial software. IRFs can be determined with
those algorithms through different methods, e. g., the covariance method based on the sum
of convolutions of the measured input forces. However, there is an over parametrization
that is a drawback when the lag memory is high. Fortunately, an expansion of the IRFs into
orthonormal basis functions can enhance the procedure of reducing the number of parameters
[15]. For describing mechanical vibrating systems, Kautz filters are interesting orthogonal
functions set in Hilbert space [21] that include a priori knowledge about the dominant poles.
The eigenvalues associated to vibrating mechanical systems are conjugated complex poles,
so, the IRFs can be expanded in orthonormal basis functions with those conditions. Kautz
filters are orthogonal funcions that can be used for this purpose. These filters can decrease the
computational cost and accelerate the convergence rate providing a good estimate of the IRFs
[14].

©2012 Lopes Junior et al., licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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Kautz filters have found several applications, e.g., acoustic and audio [20], circuit theory
[17], experimental modal analysis in mechanical systems [2, 12–14], vibration control [6],
model reduction [4], robust control [18], predictive control [19], general system identification
[5, 16, 22, 25], non-linear system identification with Volterra models [7–11], etc. Although it
may seem that the mathematical and theoretical aspects of Kautz filters are more interesting
for academic purposed, some practical applications can be found in the literature. For
example, the flight testing certification of aircrafts for aeroelastic stability was completely
charecterized through a series connection of Kautz filters in [1]. The application used a
simulated nonlinear prototypical two-dimensional wing section and F/A-18 active aeroelastic
wing ground vibration test data.

In specific control applications with Kautz filters, the strategies are, normally, based on active
noise control using feedforward compensation, e. g. as performed in [26]. It is well-known
that Wiener theory can be used to describe internal model control to change the control
architecture from feedforward to feedback [3]. However, feedback compensation can also be
directly implemented. Thus, the goal of the present chapter is to apply Kautz filters for active
vibration control. The main steps and characteristics involved in this procedure are described.
Specifically, this chapter emphasises the following:

• Feedback control, considering dynamic canceling.

• It is not necessary to have a complete mathematical model and the controller is designed
directly in the digital domain for fast practical implementation.

• The control method is based on experimental IRFs (nonparametric) and in orthonormal
basis functions. Thus, the method is grey-box because prior knowledge of the mechanical
vibrating system treated is assumed (poles of Kautz filter to represent the system).
Additionally, complex vibration system can be controlled.

• An example of a single-degree of freedom mechanical model is used to illustrate the main
steps.

• Additionally, an experimental example by using a clamped beam with PZT actuator and
PVDF sensor is presented.

The chapter is organized as follows. First, the IRF identification and covariance method is
reviewed briefly, followed by the Kautz filter with multiple poles for expansion of impulse
response. After, a vibration control strategy is described and example applications involving
single-input-single-output vibrating systems are used to illustrate the approach. Finally, the
results are discussed and suggestions for a non-linear identification procedure are proposed.

2. Impulse response function

The output ỹ(k) of a linear discrete-time and invariant system can be written as:

ỹ(k) =
∞

∑
i=0

h(i)u(k− i) (1)

where the sequences {u(k), k = 0, 1, . . . , Tf } and {ỹ(k), k = 0, 1 . . . , Tf } are the sampled input
and output signals, respectively; Tf is the final time, and h(k) is the impulse response function
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Active Vibration Control Using a Kautz Filter 3

(IRF). The measured output signal is given by y(k) = ỹ(k) + w(k), where w(k) is a white or
colored noise. The eq. (1) represents a sum of convolution between the input signal u(k) and
the IRF h(k). In mechanical and vibrating systems applications, the IRF can be obtained by
impact tests with a hammer or by using numerical algorithms based on time or frequency
measured signals.

Normally, to obtain the IRF, eq. (1), is truncated in N terms by considering |h(k)| < ε, ∀j > N,
where ε is a residue. In this case, eq. (1) can be given as:

y(k) ≈
N

∑
i=0

h(i)u(k− i) (2)

The approach in eq. (2) changes an infinite impulse response model (IIR) into a finite
impulse response model (FIR). The most common method to identify the h(k) is by using
the correlation functions due to the robustness to noise issues yielding to the classical
Wiener-Hopf equation:

Ruy(k) ≈
N

∑
i=0

h(i)Ruu(k− i) (3)

where the correlation function Ruu(k) and cross-correlation function Ruy(k) can be estimated
experimentally. Based on eq. (3), a least-square (LS) identification method can be performed
to estimate the expansion coefficients in the time-series that describes the FIR model h(k). This
approach for estimating an IRF has some advantages over other estimators, for instance:

• the stability of the identified model is guaranteed a priori, since the model is FIR.

• the model is assumed to be described only for arbitrary zeros and poles at the origin of the
complex plane.

• the model is linear in the parameters, hence the LS approach can be performed.

However, this identification technique often leads to conservative results because a common
vibration system is hardly ever represented by a FIR model. Thus, the practical drawback is
that a large number of parameters h(k) must be considered in order to obtain a good approach
in eq. (3). In order to overcome this drawback, a set of orthonormal basis functions can be
employed to expand the covariance method and reduces the number of parameters. Next
section provides some considerations in this sense.

3. Covariance method expanded in orthonormal basis functions

The IRF h(k) can alternatively be written using αj, j = 0, 1, . . . , J, as expansion coefficients
described by z-function Ψj(z):

h(k) =
J

∑
j=0

αjψj(k), k = 0, 1, . . . , N (4)
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where ψj(k) is the IRF of the transfer function Ψj(z). The z transform of eq. (4) is given by a
linear combination of the functions Ψj(z):

H(z) ≈ α0Ψ0(z) + α1Ψ1(z) + · · ·+ αJΨJ(z) =
J

∑
j=0

αjΨj(z) (5)

The convergence of Ψj(z) is related to the completeness properties of these subsets of
functions. If the functions Ψj(z) are properly chosen (poles placement), the order J << N.
Thus, it is easier to identify the coefficient αj using eq. (4) [2, 12, 14, 15, 22, 24], which can be
written in a matrix form:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h(0)

h(1)

...

h(N)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ0(0) ψ1(0) · · · ψJ(0)

ψ0(1) ψ1(1) · · · ψJ(1)

...
...

. . .
...

ψ0(N) ψ1(N) · · · ψJ(N)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α0
α1

...

αJ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

By incorporating the eq. (4) into Wiener-Hopf equation, eq. (3), one can obtain:

Ruy(k) ≈
N

∑
i=0

h(i)Ruu(k− i) ≡
N

∑
i=0

J

∑
j=0

αjψj(i)Ruu(k− i)

=
J

∑
j=0

αj

N

∑
i=0

ψj(i)Ruu(k− i) =
J

∑
j=0

αjvj(k) (7)

where vj(k), k = 0, · · · , N is the input signal Ruu(k) processed by each element of the
discrete-time function ψj(k), j = 0, 1, . . . , J, which forms the approximation base and is the
IRF of the orthogonal function:

vj(k) =
N

∑
i=0

ψj(i)Ruu(k− i) (8)

Eq. (8) is basically a filtering of the input signal Ruu(k) by a set of filter ψj(k). Finally, the eq.
(7) is used to describe:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ruy(0)

Ruy(1)

...

Ruy(N)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v0(0) v1(0) · · · vJ(0)

v0(1) v1(1) · · · vJ(1)

...
...

. . .
...

v0(N) v1(N) · · · vJ(N)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α0

α1

...
αJ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9)

The effectiveness of the model is limited by the choice of the filters Ψj(z). Thus, the choice
of the basis functions is very important. For describing mechanical vibration and flexible
systems, the Kautz functions have been demonstrated to provide a good generalization by
including complex poles in the z-domain [2, 14].
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4. Kautz filter

The Kautz filters can be given by [16, 22, 24]:

Ψ2n(z) =

√
(1− c2)(1− b2)z

z2 + b(c− 1)z− c

[
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z− c

]n−1

(10)

Ψ2n−1(z) =

√
1− c2z(z− b)

z2 + b(c− 1)z− c

[
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z− c

]n−1

(11)

where the constants b and c are relative to the poles β = σ + jω and β∗ = σ− jω in the j-th
filter through the relations:

b =
(β j + β∗j )
(1 + β jβ

∗
j )

, (12)

c = −ββ∗j (13)

A sequence of filters is utilized with different poles in each section describing the modal
behavior in the frequency range of interest. A question is relative for choosing the poles and
the IRFs iteratively based on application of eq. (2) and output experimental signal ye(k). An
error signal can be written by:

e(k) = ŷ(k)− ye(k) (14)

where ŷ(k) is the predicted output signal by the IRF ĥ(k) estimated considering Kautz basis
defined by the poles β j and β∗j in the z-domain:

ŷ(k) =
N

∑
i=0

ĥ(i)u(k− i) (15)

The optimization problem can be described by objective function that employs an Euclidean
norm and the Kautz poles are functions of the frequencies and damping factors that are
the optimization parameters. These parameters can be restricted in a range searching. This
optimization problem can be solved by several classical approaches. A detailed explanation
in this point can be found in [12].

5. Active vibration control strategy

If an IRF is well identified through covariance method expanded with Kautz filters, a model
in z-domain can be described by applying the z− transform in the IRF h(k)1:

H(z) =
+∞

∑
n=0

h(n)z−n ≈ α0Ψ0(z) + α1Ψ1(z) + · · ·+ αJΨJ(z) (16)

1 Considering h(k) is a causal sequence.
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A controller can be inserted in the direct branch of the control loop to try to reject the
disturbance. This controller G(z) has a digital structure given by:

G(z) = L(z)H−1(z) (17)

where H−1(z) is the inverse of the identified transfer function of the system and L(z) has the
desirable dynamic. The compensator L(z) can have a second order structure or any format
with a damping ratio ξc bigger than the uncontrolled damping ratio. The control project
is to find a gain and the G(z) formed to reduce the damping of the system. For practical
implementation, these equations can be programmed directly in the discrete-time domain by
using the mathematical convolution operator.

It is worth to point out that one consider only the control of stable systems described by H(z)
experimentally identified. Consequently, the transfer function H(z) has all poles within the
unitary circle because H(z) is identified using the Kautz poles that are set to be stable. The
auxiliary function L(z) is proposed to warrant stability and the required performance in the
closed-loop system

Two examples are used to show the approach proposed. The first one is a
single-degree-of-freedom model that is a simple and easy example for the interested reader
reproduce it. The second one is based on active vibration control in a smart structure with
PZT actuator and PVDF sensor for presenting its use employing experimental data.

The results are illustrated in a single-degree-of-freedom model given by:

ẍ(t) + 2ξωnẋ(t) + ω2
nx(t) = f (t) (18)

where x(t) is the displacement vector, the over dot is the time derivative, ξ is the damping
factor, ωn is the natural frequency in rad/s and f (t) is the excitation force. To simulate
the uncontrolled responses, it were used the values of ξ = 0.01 and ωn = 62.83 rad/s that
correspond to 10 Hz. The motion equation from eq. (18) is solved numerically through
the Runge-Kutta method with a sampling rate of 100 Hz, that corresponds to a time sample
of dt = 0.01 s, with 2048 samples. The force used was a white noise random with level
of amplitude of the 3 N. The fig. (1) shows the input and output signal simulated for
uncontrolled condition.

An important step to identify the IRFs is the choice of Kautz poles that need to reflect
adequately the dominant dynamics of the vibrating systems. In real-world application the
choice of the poles is a complicated problem. However, a simple power spectral density of
the output signal (in our example the displacement) can give an orientation to help in the
selection. If the system is more complicated, an optimization procedure could be used [12].
Figure (2) shows the power spectral density of the displacement. Clearly, it seems a peak
value close to 10 Hz that is a possible candidate of natural frequency. The frequency response
function (FRF) experimental is also estimated through spectral analysis only to compare the
values of the natural frequency and damping factor, fig. (3).

Based on the frequency of 10 Hz, a continuous pole in s−domain given by s1,2 = −0.6283±
62.82j, where j is the imaginary unit, is set. Kautz filter is described in discrete-time domain,
so, it is necessary to convert the pole to z−domain. The relationship β = esdt can be used to
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(a) Input force (disturbance).
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(b) Output displacement.

Figure 1. Response of the system for the uncontrolled case.
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Figure 2. Power spectral density of the output signal (displacement) estimated using Welch method
with Hanning window, 25 % of overlap and two sections.

obtain the discrete Kautz poles given by β = 0.8040+ 0.5841j and β∗ = 0.8040+ 0.5841j. Once
the system is a SISO and with only one degree of freedom, only one section of Kautz filter is
employed, J = 1 (2 terms), and N = 600 samples are considered to be enough to complete
description of the memory lag. The constants b and c are computed through eq. (12) and (13)
and the eqs. (10) and (11) are utilized to construct the Kautz filter given by:

Ψ0(z) =
0.0926

z2 − 1.608z + 0.9875
(19)

Ψ1(z) =
0.1575z− 0.1275

z2 − 1.608z + 0.9875
(20)

The impulse response of the two sections of the Kautz filter are used to process the correlation
function of the input signal f (t), through eq. (8). Equation (9) is solved by LS approach in
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Figure 3. Frequency response function identified using spectral estimate H1 through Welch method with
Hanning window, 25 % of overlap and two sections.

order to identify the expansion coefficients α0 and α1. With these values, eq. (6) is used to
identify the IRF. Figure (4) presents the result of the identification process and compare with
the analytical IRF. It is observed a good concordance between the experimental identified and
the theoretical IRF.
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Figure 4. Impulse response function comparison between analytical and identified by Kautz filters.

Once the IRF is identified, an experimental FIR model representative of the system is now
known. This H(z) model is used to represent a controller G(z) inserted in the direct branch of
the control loop with unitary feedback, by using the following expression:

G(z) = L(z)H−1(z) (21)
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where H−1(z) is the inverse of the transfer function of the system identified experimentally,
H(z), described by:

H(z) ≈ α0Ψ0(z) + α1Ψ1(z) (22)

and L(z) is a desirable dynamic to the system. The controller used has the following structure
of a second order system:

L(s) = K
ω2

n
s2 + 2ξcωns + ω2

n
(23)

where ξc is the damping factor of the controlled system and K is a control gain. The structure
in eq. (23) is continuous in the s−domain, and for application in a digital format is necessary
to use a bilinear transform (Tustin’s method). It is chosen a gain of K = 3× 10−4 and ξc = 0.08.
These values are chosen based on the adequate behavior for the controlled system in the closed
loop and with a low level of control actuator force required. The natural frequency in closed
loop is maintained the same of the uncontrolled system. Thus, the digital compensator L(z)
is given by:

L(z) = 10−5 5.543z + 5.358
z2 − 1.541z + 0.9044

(24)

Finally, the feedback transfer function M(z) is given by:

M(z) =
L(z)H−1(z)H(z)

1 + L(z)H−1(z)H(z)
(25)

that corresponds to:

M(z) = 10−5 5.543z3 − 3.184z2 − 3.244z + 4.846
z4 − 3.082z3 + 4.183z2 − 2.787z + 0.8179

(26)

Clearly the effectiveness of the controller depends on the correct identification of the H(z) to
allow a perfect cancelation. Figure (5) shows the frequency response function comparison
between uncontrolled and controlled system where it is seen that the peak decrease by
increase actively the damping with the digital compensator. Figure (6) shows the output
displacement without and with control. The disturbance force is considered with the same
level and type of the tests used in the uncontrolled condition.

A cantilever aluminium beam with a PZT actuator patch and a piezoelectric sensor (PVDF)
symmetrically bonded to both sides of the beam is used to illustrate the process of IRF
identification and design of a digital controller for active vibration reduction. The PZT and
PVDF are bonded attached collocated near to the clamped end of the beam, as seen in fig.
(7). The PZT patch is the model QP10N from ACX with size of 50× 20× 0.254 mm of length,
width and thickness, respectively. The PVDF has dimensions of 30× 10× 0.205 mm of length,
width and thickness, respectively, and it is bonded with a distance of 5 mm of the clamped
end. The complete experimental setup is shown in figs. (7) and (8).

A white noise signal is generated in the computer, converted to analogic domain with a D/A
converter and pre-processed by a voltage amplifier with gain of 20 V/V before application in
the PZT actuator. The output signal is measured with the PVDF and linked directly with the
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Figure 5. Frequency response function comparison between uncontrolled and controlled condition.
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Figure 6. Output displacement comparison between uncontrolled and controlled condition.

charge amplifier and pre-processed with a A/D converter. All experimental signals are saved
and processed with a dSPACE 1104 acquisition board with a sample rate of 1 kHz and with 5
seconds of test duration. Figure (9) shows the time series signals of PZT actuator (input) and
PVDF sensor (output) for uncontrolled system.

The first step in this approach is the choosing an adequate set of poles for the Kautz Filters.
As the mathematical model is unknown, one needs to start by availing the power spectral
density of the PVDF sensor (output) as suggested in the first example. Figure (10) presents
the power spectral density of the output signal (PVDF) estimated using Welch method with
Hanning window, 50 % of overlap and 5 sections. The peaks in frequencies of 13, 78, 211, 355
and 434 Hz can be considered candidates for natural frequencies. For comparison purposes,
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(a) Overall experimental setup.

(b) Detail of the PVDF Sensor.

Figure 7. View of the experimental setup.

the frequency response function (FRF) experimental is estimated through spectral analysis to
observe the values of the natural frequencies and damping factors, fig. (11).

Based on the spectral analysis one must choose the continuous poles candidates given by

si = −ξiωni ± jωni

√
1− ξ2

i , i = 1, 2, 3, 4, 5. The most difficult parameters to be identified are
the damping factors. Several trial and error tests were performed until to reach an adequate
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Figure 8. Experimental setup.
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(a) PZT Actuator.
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(b) PVDF Sensor.

Figure 9. Response of the experimental tests in the time domain for the uncontrolled case.
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Figure 10. Power spectral density of the output signal (PVDF) estimated using Welch method with
Hanning window, 50 % of overlap and 5 sections.
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Figure 11. Frequency response function identified using spectral estimate H1 through Welch method
with Hanning window, 50 % of overlap and 5 sections.

result. A reasonable identification were reached based on the parameters given by:

ωn1 = 81.68 rad/s ξ1 = 0.04 s1 = −3.2673± 81.6160j (27)

ωn2 = 490.08 rad/s ξ2 = 0.019 s2 = −9.3117± 490j (28)

ωn3 = 1.3258× 103 rad/s ξ3 = 0.02 s3 = −26.515± 1325.5j (29)

ωn4 = 2.23× 103 rad/s ξ4 = 0.1 s4 = −223.05± 2219.4j (30)

ωn5 = 2.72× 103 rad/s ξ5 = 0.1 s5 = −276.7± 2713.2j (31)

Once the fourth and fifth modes are apparently well damped by analysing the frequency
response the correspond poles are also considered well damped (not dominants). The Kautz
filter is described in the discrete-time domain. So, it is necessary to convert to z−domain. The
relationship βi = esidt can be used to obtain the five pair of complex discrete Kautz poles given
by:

β1 = 0.9934± 0.0813j (32)

β2 = 0.8742± 0.4663j (33)

β3 = 0.2365± 0.9447j (34)

β4 = −0.4833± 0.6376j (35)

β5 = −0.6925± 0.3163j (36)

The cantilever beam is a SISO system, but with apparent five modes in the frequency range
computed of interest. So, they are used 5 sections of Kautz filters, J = 4 and N = 1200 samples
that are considered to be enough to complete the view of the memory lag. The constants b and
c are computed and the eqs. (10) and (11) are utilized to construct the Kautz filters.

Figure (12) shows the comparison between the IFFT of the FRF from H1 estimated and the IRF
identified through Kautz filter.
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Figure 12. Impulse response function comparison between IFFT of the estimated FRF and identified by
Kautz filters.
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Figure 13. FRF comparison between estimated FRF through H1 spectral estimate and identified by
Kautz filters.

Although, it seems that are not a complete visual agreement between the curves, the FRF
seen in figure (13) presents a good agreement. It is worth to comments that with the
same experimental data, [23] identified a state-space model through Eigensystem Realization
Algorithms (ERA) combined with Observer/Kalman filter Identification (OKID). The results
presented with Kautz filter allowed a better identification in this frequency range comparing
than with ERA/OKID.

Figure (14) shows the output response of th PVDF estimated by a convolution between the IRF
identified by Kautz filter with the input excitation from PZT actuator. The estimated output
can be compared with the experimental measured response (see fig. 9(b)).
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Figure 14. PVDF output estimated by IRF identified with Kautz filters.

The controller is designed based on the inverse of the identified system described by eq. (16),
called by H−1(z), in series with a compensator L(z). The L(z) is chosen by combination of 3
second-order system realized in parallel structure:

L(z) = K (L1(z) + L2(z) + L3(z)) (37)

where K = 1.5× 10−3 is a controller gain and the transfer functions are defined by:

L1(z) =
0.003316z + 0.003298
z2 − 1.977z + 0.9838

(38)

L2(z) =
0.1122z + 0.1068

z2 − 1.644z + 0.8633
(39)

L3(z) =
0.6691z + 0.5813

z2 − 0.4215z + 0.6718
(40)

It is important to observe that the three compensators, L1(z), L2(z) and L3(z) have the natural
frequencies corresponding to the first three modes of the systems, but with an increase in
the level of damping factor for reducing the vibration level in the closed-loop system. The
compensator L(z) in its final form is given by:

L(z) =
0.001177z5 − 0.003011z4 + 0.001994z3 + 0.001218z2 − 0.002219z + 0.0008492

z6 − 4.043z5 + 7.297z4 − 7.907z3 + 5.676z2 − 2.592z + 0.5706
(41)

It was decided to control only the 3 first modes for two main reasons:

• The fourth and fifth modes are not dominant.

• Additionally, these modes are not well identified by the Kautz filter. One included
the damping factor in these modes with these values shown above in order to correct
identification the anti-ressonance region.
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Figure (15) shows the FRF comparison between the uncontrolled (estimated by Kautz filter)
and controlled system where is possible to observe the reduction in the resonance peak caused
by the controller implemented.
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Figure 15. FRF comparison between uncontrolled and controlled condition. Input: PZT actuator -
Output: PVDF sensor.

Another advantage of this procedure face to state-feedback approaches is relative to the
controlability and observability conditions. If one use procedures identification for obtaining
a state-space realization, e. g. ERA/OKID as made by [23], is necessary to verify a prior
the observability and controlability conditions. In some situations some modes are not
controllable and observable adequately with a specific realization. Once the technique used in
this chapter is not described in state-space variables and it is based on input/output variables
with non-parametric IRF model, these kinds of drawbacks are avoided.

This chapter has described a procedure for non-parametric system identification of an impulse
response function (IRF) based on input and output experimental data. Orthogonal functions
are used to reduce the number of samples to be identified. A simple active vibration
control procedure with a digital compensator that seeks to cancel the plant dynamic is also
described. Once the IRF in the uncontrolled condition is well estimated by Kautz filters, the
control strategy presented can increase the damping in a satisfactory level with low actuator
requirements. Single-input-single-output vibrating systems have been used to illustrate the
performance and the main aspects for practical implementation. This procedure can also be
extended for nonlinear systems using Hammerstein or Wiener block-oriented models.
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