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Abstract

In this chapter, an attempt has been made to present the recent state of knowledge of
free-convection condensation heat transfer on geometrically enhanced tubes. This sur-
vey is divided into three sections. The first section concentrates on research on conden-
sate flooding or retention. The second and the third sections cover the experimental and
the theoretical work on geometrically enhanced tubes, respectively.
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1. Introduction

The phenomenon of condensation heat transfer has been researched for over a century now. In
the beginning, the primary focus to increase heat transfer was kept limited to the increase in
surface area. Later, it was revealed that surface-tension forces play a vital role in thinning the
condensate layer which in turn increases heat transfer. The mechanism of condensation heat
transfer on two-dimensional integral-fin tubes is now well understood. Researchers have
successfully identified the optimum geometries, fin shapes, dimensions and materials for
integral-fin tubes for a wide range of condensing fluids. A number of theoretical models, for
instance Briggs and Rose [1], Ali and Briggs [2], have successfully combined the effect of
surface tension and gravity to explain condensation heat transfer on integral-fin and pin-fin
tubes. However, relatively fewer investigations have been carried out for condensation on
three-dimensionally enhanced tubes.

This chapter presents a state-of-the-art review of condensation heat transfer on single-horizon-
tal geometrically enhanced tubes. The problem of condensate retention on geometrically
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enhanced tubes has been reviewed in detail followed by the experimental and theoretical
investigations of condensation heat transfer on integral-finned and pin-finned tubes.

2. Free-convection condensation on horizontal smooth tubes

The first investigator to propose a theoretical model of condensation heat transfer on vertical
plates and horizontal tubes was Nusselt [3]. By considering laminar flow and constant proper-
ties for the condensate film, uniform temperature on the vapour side (no temperature gradient
in the vapour), and neglecting inertia, convection in the condensate film (i.e. heat transfer
across the condensate film occurs only by conduction) and shear stress at the condensate
surface, the following results were obtained:

For a vertical plate:

NuP ¼ 0:943
ρðρ−ρvÞghf gL3

μkΔT

" #1=4
(1)

For a horizontal tube:

NuT ¼ 0:728
ρðρ−ρvÞghf gd3

μkΔT

" #1=4
(2)

Many theoretical investigations have since been carried out including factors neglected by
Nusselt [3] such as convection in condensate, shear stress and inertia (for instance, Sparrow
and Gregg [4], Koh et al. [5] and Chen [6, 7]). The inclusion of these parameters made little
practical difference to the results of Nusselt [3]. Rose [8] reports a comprehensive literature
review of theoretical studies of laminar-film condensation on smooth tubes.

3. Free-convection condensation on horizontal-enhanced tubes

3.1. Condensate retention or flooding

It is well understood that heat-transfer rate is strongly influenced by the available area. For
that reason, a long time ago smooth tubes were replaced by horizontal integral-fin tubes. No
doubt, the addition of the fins provides an increase in area that ultimately leads to an
enhancement in heat transfer, but a significant amount of condensate is retained on the tube
due to capillary forces. This phenomenon of trapped liquid between fins is known as ‘con-
densate retention or flooding’ and is illustrated in Figure 1. This condensate offers a great
resistance to heat transfer. A flooding angle, ∅f , has been defined to indicate the point from
the top of the tube, where the condensate flooding completely fills the inter-fin spacing up to
the tip of the fin. This problem of condensate retention was first experimentally investigated
by Katz et al. [9].
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Rudy and Webb [10, 11] reported experimental investigations of condensate retention on three
integral-fin tubes and a spine-fin tube with fin densities in a range of 748–1378 fins per meter
using n-pentane, R-11 and water under static (without condensation) and dynamic (with
condensation) conditions. For all the fluids, they found an increase in condensate retention
with increasing fin density and surface-tension-to-density ratio. They also found no significant
differences in condensate retention under static and dynamic conditions.

Honda et al. [12] presented a comprehensive experimental and theoretical analysis of conden-
sate flooding using R-113 and methanol on three horizontal integral-fin tubes and a saw-
toothed tube with and without ‘drainage strips'. A significant decrease in condensate retention
was reported when the same tubes were used with drainage strips. One of the integral-fin
tubes was tested under both static and dynamic conditions and no significant change in
condensate retention was observed which was in line with the findings of Rudy andWebb [10].

Honda et al. [12] made the following assumptions for their theoretical analysis of the static
meniscus between trapezoidal fins:

1. The meniscus is just in contact with the fin tip.

2. The radius of curvature of the condensate interface is much smaller in the longitudinal
direction than in the circumferential direction.

3. The fin height (h) and the fin-tip spacing (b) are sufficiently smaller than the fin-tip radius
(Ro).

4. The radius of curvature at the tube bottom is infinite in the longitudinal direction.

Using the above assumptions, the following expression was produced for retention angle, ∅f ,

measured from the top of the tube:

∅f ¼ cos −1 2σ cosθ
ρgbRo

� �
−1

� �
(3)

where

h > ðs=2Þ cosθ (4)

Figure 1. Condensate flooding on a horizontal integral-fin tube showing retention angle ∅f :
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Honda et al. [12] compared their own experimental data, experimental data of Katz et al. [9]
and experimental data of Rudy and Webb [10] using Eq. (3). Good agreement was found
between experiment and theory. Later, Rudy and Webb [11] and Owen et al. [13] obtained the
same Eq. (3) of condensate-retention angle for integral-fin tubes.

Yau et al. [14] reported experimental data for condensate-retention angle using fluids steam,
ethylene glycol and R-113. Thirteen tubes with rectangular integral fins were tested with a fin
height of 1mm, a thickness of 0.5mm and a variable-fin spacing. For tubes with h > s=2, the
measured retention angles showed good agreement using Eq. (3) as shown in Figure 2. Two
tubes with fin spacing of 1.5 and 2mm were also tested using copper-drainage strips; a
significant increase in the retention angle was noted. The following empirical expression was
determined for the retention angle of tubes using drainage strips:

∅f ¼ cos −1 0:83σ
ρgbRo

−1
� �

(5)

Figure 2 also shows a good agreement of experimental data using Eq. (5). A provisional
equation for trapezoidal integral-fin tubes using drainage strips was also suggested as

∅f ¼ cos −1 0:83σ cosθ
ρgbRo

−1
� �

(6)

Masuda and Rose [15] comprehensively analyzed the configuration of the liquid film retained
by surface-tension forces on horizontal low integral-fin tubes (h≪Ro). This study revealed that

Figure 2. Liquid retention results with and without drainage strips (after Yau et al. [14]).
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the liquid is not only retained on the lower part of the tube (below the retention angle) but also
on the upper part of the tube surface in the form of ‘wedges’ between fin flanks and tube
surface in the inter-fin space. This phenomenon is illustrated in Figure 3. Figure 3b and c

describes the configuration of liquid around the tube for narrow-spaced
�
h > ðs=2Þ cosθ

�
and

wide-spaced
�
h < ðs=2Þ cosθ

�
integral-fin tubes, respectively. Four ‘flooding’ conditions were

identified for trapezoidal fins and the positions around the tube at which these occur were
determined:

For narrow-spaced fins (h > ðs=2Þ cosθ), where the inter-fin space is just filled by the meniscus
but the fin flanks are not wholly wetted (Figure 3b.2). Retention angle, ∅f , for this case is given
as

cos∅f ¼ 2σ
ρgsRr

� �
cosθ

1þ sinθ

� �
−

Ro

Rr

� �
(7)

For narrow-spaced fins (h > ðs=2Þ cosθ), where the whole flank is just wetted (contact angle at
the fin tip is zero) and for which the liquid film at the centre of the inter-fin space has finite
thickness (Figure 3b.3). This is the condition for which Honda et al. [12] derived flooding angle
Eq. (3). Retention angle, ∅f , for this case is given as

cos∅f ¼ 2σ
ρgbRo

� �
cosθ−1 (8)

For wide-spaced fins (h < ðs=2Þ cosθ), where the fin flanks are wholly wetted (contact angle at
the fin tip is zero) before the inter-fin space is flooded (Figure 3c.2). Retention angle,∅f , for this
case is given as

Figure 3. Configuration of retained liquid or condensate around a horizontal integral-fin tube. (a) Condensate retention
on integral-fin tube. (b) Configuration of liquid around the narrow-spaced integral-fin tube. (c) Configuration of liquid
around the wide-spaced integral-fin tube (after Masuda and Rose [15]).
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cos∅f ¼ σ
ρghRr

� �
ð1− sinθÞ− Ro

Rr

� �
(9)

For wide-spaced fins (h < ðs=2Þ cosθ), where the whole of the inter-fin space is just flooded
and the contact angle at the fin tip is no longer zero (Figure 3c.3). Retention angle, ∅f , for this
case is given as

cos∅f ¼ 8σh
ρgðb2 þ 4h2ÞRo

 !
−1 (10)

Masuda and Rose [15] also defined an ‘active area enhancement ratio’ for low-rectangular
integral-fin tubes (when h > s=2) as ‘The unblanked area of a finned tube (i.e. area of fin tips
plus area of unblanked part of fin flanks plus area of unblanked part of inter-fin tube surface)
divided by the area of a smooth tube with radius equal to the fin root radius'. The following
equation was derived for active area-enhancement ratio, ξ,

ξ ¼
Rrb∅f ð1−f sÞ þ ðRo

2−Rr
2Þ∅f ð1−f f Þ þ πRot

πRrðbþ tÞ (11)

where f s and f f are the blanked proportions of the inter-fin space and fin flanks for the

unflooded part of rectangular-finned tube, respectively, and are given by the following expres-
sions:

f s ¼
2σ

ρgbRr

� �
tan ð∅f =2Þ

∅f

� 	
(12)

and

f f ¼
σ

ρghRr

� �
tan ð∅f =2Þ

∅f

� 	
(13)

Rose [16] extended the work and proposed expressions for f s and f f for trapezoidal-finned

tubes as

f s ¼
1− tan ðθ=2Þ
1þ tan ðθ=2Þ
� 	

2σ
ρgbRr

� �
tan ð∅f =2Þ

∅f

� 	
(14)

and

f f ¼
1− tan ðθ=2Þ
1þ tan ðθ=2Þ
� 	

σ
ρghRr

� �
tan ð∅f =2Þ

∅f

� 	
(15)

It was suggested by Masuda and Rose [15] that manufacturing integral-fin tubes with filleted
fin roots would replace the retained wedges of condensate with high-conductivity metal, and
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hence increase the active area-enhancement ratio resulting in more heat transfer. Wen et al. [17]
experimentally investigated the effect of fillet fin roots on heat-transfer enhancement using
steam, ethylene glycol and R-113 as condensing fluids on four integral-fin tubes. A significant
enhancement was found for tubes with filleted roots over tubes without filleted roots.

Briggs [18] obtained static liquid-retention measurements on 12 three-dimensional pin-fin
tubes and three integral-fin tubes. R-113, ethylene glycol and water were used as test fluids.
Static retention measurements were obtained by using two methods: first by taking photo-
graphs and second by counting pins. A comparison of both methods of measuring retention
angles is shown in Figure 4; it can be seen for water and ethylene glycol, and both methods
give results within 15%, but for R-113, pin-counting method gives higher-retention angles
compared to the photographic method. Finally, retention angles for water and ethylene glycol
were taken as the average of both the methods, but for R-113, pin-counting method was used
as it was deemed more accurate than photographic method. Liquid retention on three-dimen-
sional pin-fin tubes was found to be lower than the equivalent integral-fin tubes (i.e. with the
same longitudinal- and radial-fin dimensions). The controlling parameters appeared to be
longitudinal and circumferential pin spacing. A tube with 1-mm circumferential spacing was
found to be optimum for flooding angle. Pin height and longitudinal and circumferential pin
thickness had little influence on retention.

Figure 4. Comparison of pin-counting method with photographic method by Briggs [18].
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Comprehensive experimental data for condensate retention (for free convection) were reported
on 15 pin-fin tubes (Figure 5) by Ali and Briggs [19]. Static method to create condensate was
adopted to carry out experimentation. Pin-counting and photographic methods were used to
analyse condensate and a comparison of both methods was found to be within ±5%. All pin-fin
tubes were found to be less flooded than the equivalent integral-fin tubes. A semi-empirical
model was also reported for condensate-retention angle on pin-fin tubes as follows:

∅f ¼ cos −1 1− 0:4919−1:306 σ
ρR2g
.� �� � sc

tc

� �
2σ

ρgsRo

� �
−1

� �
f or s < 2h (16)

Ali and co-workers [20–22] have reported in detail studies on condensate retention as a
function of vapour velocity on horizontal integral-fin and pin-fin tubes. Recently, Ali et al.
[23] reported the effect of condensate flow rate on retention angle for horizontal integral-fin
tubes.

3.2. Experimental studies into condensation heat transfer on enhanced tubes

Table 1 summarizes the key facts and figures of experimental investigations carried out on
enhanced tubes which are described in detail in the following sections.

3.2.1. Tubes with two-dimensional fins

Honda et al. [12] presented heat-transfer measurements for the condensation of R-113 and
methanol on three integral-fin tubes and a three-dimensional saw-toothed tube. The vapour-
side, heat-transfer coefficient was found by direct measurements (12–16 thermocouples were
placed in each tube wall). The saw-toothed tube gave the best heat-transfer enhancements
(defined as heat-transfer coefficient for saw-toothed tube based on fin-tip diameter divided
by the heat-transfer coefficient for a smooth tube at the same vapour-side, temperature differ-
ence) for both fluids which was 9.0 and 6.1 for R-113 and methanol, respectively.

Figure 5. Sketch of a three-dimensional pin-fin tube.
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Yau et al. [24] reported an experimental study of dependence of heat transfer on fin spacing for
the condensation of steam on horizontal integral-fin tubes. Thirteen tubes with rectangular fins
having a thickness of 0.5mm and a height of 1.6 mm were tested by systematically varying fin
spacing from 0.5 to 20mm. All tubes were having a fin-root diameter of 12.7mm. A plain tube
with an outer diameter equal to the fin-root diameter was also tested for comparison. All tests
were performed at near-atmospheric pressure with vapour flowing vertically downward with
velocities between 0.5 and 1.1m/s. The vapour-side, heat-transfer coefficients were found by
subtracting the predetermined coolant side and wall resistance from the overall thermal resis-
tance. The observed heat-transfer enhancement for integral-fin tubes significantly exceeded the
increase in active area. The maximum vapour-side, heat-transfer enhancement was found to be
around 3.6 for the tube with a fin spacing of 1.5mm. Integral-fin tubes with a spacing of 0.5
and 1.0mm were found to be almost completely flooded by condensate.

Yau et al. [14] also used solid drainage strips with two integral-fin tubes of fin spacing of 1.5
and 2.0mm and found that for steam the drainage strip significantly reduced the condensate
flooding. The drainage strips were made of copper having a thickness of 0.5mm and a height
of 8mm. The tubes with strips provided about 25–30% additional heat-transfer enhancement
compared to the same integral-fin tubes without strips.

Masuda and Rose [25, 26] reported experimental data for the condensation of R-113 and
ethylene glycol on integral-fin tubes. The effect of fin spacing was investigated on the same
set of tubes as used by Yau et al. [14, 24] with the inclusion of a new integral-fin tube with a fin
spacing of 0.25mm. Predetermined coolant-side correlation and a modified Wilson plot
method were used to evaluate the vapour-side, heat-transfer coefficients. For both condensing
fluids vapour-side, heat-transfer enhancement was found to be about two times higher than
the corresponding active area. Tubes with a spacing of 0.5 and 1.0mm showed best heat-
transfer enhancement of 7.3 for R-113 and 4.4 for ethylene glycol, respectively.

Masuda and Rose [15] summarized the above experimental investigations by plotting the
dependence of vapour-side, heat-transfer enhancement against fin spacing. For steam, ethyl-
ene glycol and R-113, tubes with a fin spacing of 1.5, 1 and 0.5mm, respectively, gave the best
heat-transfer enhancement. They also plotted a graph of active-area enhancement against fin
spacing. For steam, ethylene glycol and R-113, integral-fin tubes with a fin spacing of 1.5, 1 and
0.5mm gave the best active-area enhancement, respectively. Thus, heat-transfer enhancement
is a maximum for fin spacing that maximize the active area.

Wanniarachchi et al. [27, 28] reported vapour-side, heat-transfer measurements for the con-
densation of steam at atmospheric and low (11.3kPa) pressure on 24 horizontal rectangular
cross-section integral-fin tubes made of copper. Fin spacing (0.5, 1.0, 1.5, 2.0, 4.0mm), fin
thickness (0.5, 0.75, 1.0 and 1.5mm) and fin height (0.5, 1.0, 1.5 and 2.0mm) were changed
systematically to find the best geometry for heat transfer. Vapour-side, heat-transfer coeffi-
cients were obtained using a predetermined coolant-side correlation and also by a modified
Wilson plot method. Enhancement ratio was found to be strongly dependent on fin spacing
and an optimum value was reported between 1.5 and 2.0mm for all tubes. Fin thickness
showed a weak effect on enhancement ratio with an optimum range between 0.75 and 1.0mm.
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Enhancement ratio was found to increase with increasing fin height but at a lower rate than the
area increase.

Marto et al. [29] presented an experimental study to identify the optimum fin shape to
maximize heat transfer. Four integral-fin tubes with rectangular, triangular, trapezoidal and
parabolic fin shapes were tested using steam as the condensing fluid. All tubes had a same fin
height and fin-root spacing and thickness. Tests were carried out at near-atmospheric and
below-atmospheric pressures. A tube with a roughly parabolic fin shape outperformed the
tubes with rectangular, triangular and trapezoidal fin shapes at both pressures.

Marto et al. [30] reported experimental data condensing R-113 on 24 integral-fin tubes and a
commercially available tube. Fin spacing was varied systematically in a range of 0.25–4mm for
different sets of fin thicknesses. All tests were performed at a little above atmospheric pressure
with a downward-flowing vapour velocity of 0.4m/s. Vapour-side, heat-transfer coefficients
were obtained using the modified Wilson plot method with a measured uncertainty in the
range of ±7%. The tube with a fin spacing of 0.25mm and a thickness of 0.5mm gave the best
heat-transfer enhancement of 7 for a corresponding area enhancement of 3.9. For all tubes tested,
heat-transfer enhancements were found to be considerably higher than the corresponding
increase in active areas. The best fin spacing was obtained to be in between 0.2 and 0.5mm,
depending upon the corresponding fin thickness and height. Heat-transfer coefficient was also
found to increase with increase in fin height, but the rate of increase in coefficient of heat transfer
was found to decrease with the increase in height.

Briggs et al. [31] reported experimental data for the condensation of steam, ethylene glycol
and R-113 on two sets of integral-fin tubes. The smaller tubes had a fin-root diameter of 12.7
mm, fin thickness 0.5mm and fin height 1.6mm, whereas the larger tubes had a fin-root
diameter of 19.1mm and fin thickness and height of 1.0mm. For both types, three fin
spacings of 0.5, 1.0 and 1.5mm were tested. The outside tube-wall temperature was mea-
sured directly by four embedded thermocouples. For all the smaller tubes, tests were
conducted at a little above atmospheric pressure. For larger tubes, tests were performed at a
little above atmospheric pressure for steam and R-113 and also at lower pressures of 3 and 14
kPa for ethylene glycol and steam, respectively. For both larger and smaller diameters, the
best-performing integral-fin tubes were found with fin spacings of 1.5, 1.0 and 0.5mm for
steam, ethylene glycol and R-113, respectively. They compared their own experimental data
with the indirectly obtained experimental data of earlier investigators [24, 27, 28, 30] and
a satisfactory agreement was found.

Briggs et al. [32] reported systematic experimental data for the condensation of steam and R-
113 on rectangular integral-fin tubes made of copper, brass and bronze, with fin spacing and
fin-root diameter of 1.0 and 12.7mm, respectively; fin heights and thicknesses varied in the
range of 0.5–1.6mm and 0.25–0.75mm, respectively. For R-113, the heat-transfer enhancement
was weakly dependent on fin thermal conductivity but more strongly dependent on fin height
and thickness, whereas for steam, the effect of thermal conductivity on heat-transfer enhance-
ment was much stronger for larger fin heights, but the effect of fin height and thickness was
relatively small.
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Park et al. [33] obtained experimental data for R-123 condensing on four integral-fin tubes used
in building chillers with varying fin density in a range of 10 fins per inch to 36 fins per inch. A
plain tube with the same outside diameter was also tested to compare the results. The vapour-
side, heat-transfer coefficients were found directly with embedded thermocouples in the tube
wall. The tube with a fin density of 28 fins per inch was found to be optimum with a vapour-
side, heat-transfer enhancement of 5.8.

3.2.2. Tubes with three-dimensional fins

Sukathme et al. [34] obtained experimental data for the condensation of R-11 on nine horizon-
tal integral-fin tubes and three special pin-fin tubes made of copper and reported the effect of
fin height, fin density and fin-tip angle on vapour-side, heat-transfer coefficients. All tubes
were made with trapezoidal fin shapes. Vapour-side, heat-transfer coefficients were found
from directly measured tube-wall temperatures, obtained by placing 15 thermocouples at 5
positions along the tube and at top, bottom and mid-plane around the tube. Fin-tip angle
showed a small effect on the vapour-side, heat transfer, whereas fin density and fin height
showed considerable effects on the vapour-side, heat-transfer coefficient. The best-performing
integral-fin tube with a fin density of 1417 fins per meter, a fin height of 1.22mm and a fin-tip
angle of 10° gave a vapour-side, heat-transfer of 10.3 with a corresponding active-area
enhancement of 7. Further, 80 longitudinal trapezoidal grooves were machined in the best-
performing integral-fin tube with three different heights of 0.7, 0.9 and 1.22mm. The authors
reported a large increase in vapour-side, heat-transfer enhancements with increasing value of
height. The pin-fin tube with a longitudinal groove height of 1.22mm gave a heat-transfer
enhancement of 12.3 which was about 20% more than the equivalent best-performing integral-
fin tube. The authors suggested that this increase in heat-transfer enhancement could be due to
the increase in the flooding angle of the pin-fin tube which was about 20% more than the
corresponding integral-fin tube.

Briggs et al. [35] reported experimental data for the condensation of R-113 on 17 commercially
available copper integral-fin tubes. These consisted of seven two-dimensional tubes (Gewa N
and K, trapezoidal cross section) and ten three-dimensional tubes (one thermoexcel and nine
petal shaped). It was found that the best two-dimensional tube (K-50) and best three-dimen-
sional tube (P8) gave similar vapour-side, heat-transfer enhancement of 8.2.

Cheng et al. [36] obtained condensing data for R-22 on six commercially available tubes. Two
tubes had low integral fin, whereas four were three-dimensionally enhanced. One set of tubes
consisting of an integral-fin tube, an externally enhanced tube and an externally plus internally
enhanced tube has a fin density of 26 fins per inch, fin pitch of 0.97mm and a height of 1.3mm,
whereas the other set of tubes consisting of one integral-fin tube, one externally enhanced tube
and one externally plus internally enhanced tube has a fin density of 40 fins per inch, fin pitch
of 0.61mm and a fin height of 1.42mm. Experiments were carried out at three different
pressures of 1.3, 1.5 and 1.6MPa. AWilson plot method was used to obtain vapour-side, heat-
transfer coefficients. The three-dimensional externally plus internally enhanced tubes showed
the highest heat-transfer coefficients compared to rest of the tubes. The heat-transfer coeffi-
cients were found to decrease with increasing value of pressure. It was also found that vapour-
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side, heat-transfer coefficients decreased more sharply for three-dimensionally enhanced tubes
as a function of increasing temperature difference compared to integral-fin tubes.

Kumar et al. [37] reported experimental data for the condensation of steam on a plain tube
with an outside diameter of 22mm and an integral-fin tube (with an outside diameter of 25
mm, fin height of 1.1mm, fin thickness of 1.1mm and fin spacing of 1.5mm). A three-dimen-
sional pin-fin tube was also tested with similar radial and longitudinal dimensions as of
integral-fin tube but with 40 axial grooves around the circumference producing a circumferen-
tial pin spacing of 0.9mm. The condensing-side heat-transfer coefficients were found using a
modified Wilson plot method and also by direct measurement of wall temperatures; good
agreement was found between the two methods. Vapour-side, heat-transfer enhancements of
2.5 and 3.6 were found for the integral-fin tube and pin-fin tube, respectively. The superior
performance of the pin-fin tube was thought to be primarily due to the thinning of the
condensate film by the surface-tension pull in two directions in the unflooded area as also
proposed by Sukhatme et al. [34] condensing R-11 and also due to the improved condensate
drainage at the bottom of the tube. Authors reported the improved condensate drainage at the
bottom part of the pin-fin tube compared to the condensate drainage for the integral-fin tube.

Jung et al. [38] reported vapour-side, heat-transfer enhancements for an integral-fin tube with
fin density of 26 fins per inch and a three-dimensional turbo-C tube with a fin density of 42 fins
per inch condensing two low-pressure (R-11 and R-123) and two medium-pressure (R-12 and
R-134a) refrigerants. A plain tube was also tested for comparison. Vapour-side, heat-transfer
coefficients were obtained directly by measuring the tube-wall temperature with embedded
thermocouples. For low-pressure refrigerants, heat-transfer coefficients for R-123 of about 8–
19% lower than those of R-11 were found for all tubes tested. For medium-pressure refriger-
ants, heat-transfer coefficients for R-134a were about 0–32% higher than those for R-12. The
vapour-side, heat-transfer enhancements for turbo-C and integral-fin tubes based upon the
plain tube area were roughly reported up to 8.0 and 5.5, respectively.

Kumar et al. [39, 40] presented experimental data for the condensation of steam and R-134a.
Five tubes consisting of one plain, one integral-fin, one pin-fin and two partial integral-fin
tubes (i.e. one with pin fins on the upper half and one with pin fins on the lower half) were
tested for each fluid. For steam, all enhanced tubes had rectangular fins and a fin density of 390
fins per meter, whereas for R-134a, all enhanced tubes had trapezoidal fins and a fin density of
1560 fins per meter. Pin-fin tubes were made by machining longitudinal grooves into integral-
fin tubes. Pin-fin tubes gave the best vapour-side, heat-transfer enhancements of 2.9 for steam
(30% more than equivalent integral-fin tube tested) and 6.5 for R-134a (24% more than equiv-
alent integral-fin tube tested). Pin fins were reported to be more effective at lower half of the
tube than the upper half of the tube, that is, for steam, a heat-transfer enhancement of 2.4 (with
pin fin on the upper half) and 2.7 (with pin fins on the lower half), whereas for R-134a, a heat-
transfer enhancement of 5.7 (with pin fins on the upper half) and 6.3 (with pin fins on the lower
half) was reported. Tubes with pin fins on the lower half outperformed the equivalent integral-
fin tubes by up to 20% for steam and 11% for R-134a. For R-134a, pin fins on the upper half of
the tube did not contribute in the heat-transfer enhancement but showed 5% improvement for
steam compared to integral-fin tube.
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Briggs [41] reported experimental data for the condensation of R-113 and steam on six three-
dimensional pin-fin tubes. These tubes were made by machining rectangular longitudinal
grooves into integral-fin tubes. A plain tube with the same outside diameter as the pin-fin
tube-root diameter was also tested for comparison purposes. The vapour-side, heat-transfer
coefficient was obtained by subtracting the coolant and wall resistances from the measured
overall resistance. For R-113, the best-performing tube had circumferential pin thickness and
spacing of 0.5mm, pin height of 1.6mm and a longitudinal spacing and thickness of 0.5mm.
For steam, the best-performing tube had circumferential pin thickness and spacing of 0.5 and
1.0mm, respectively, and longitudinal thickness of 0.5mm and spacing of 1.1mm. Tubes with
larger fin heights produced higher heat transfer when all other geometric variables remained
the same. For R-113, the best-performing tube gave a vapour-side enhancement of 9.9 com-
pared to the plain tube which was about 40% higher than the equivalent integral-fin tube with
the same fin height, longitudinal thickness and spacing. For steam, the best-performing tube
gave a heat-transfer enhancement of 2.9 compared to the plain tube which was about 25%
higher than the equivalent integral-fin tube. For R-113, a near-linear increase in heat-transfer
enhancement with active-area enhancement was reported. The heat-transfer enhancement was
approximately twice the active-area enhancement. For steam, heat-transfer enhancement was
virtually independent of active-area enhancement. The author also reported that static con-
densate flooding on pin-fin tubes was significantly less than the equivalent integral-fin tubes.

Baiser and Briggs [42] reported experimental data for the condensation of steam at atmo-
spheric pressure and low velocity on five three-dimensional copper pin-fin tubes. These were
the same tubes used in the investigations of Briggs [18]. All of the tubes had a pin-fin root
diameter of 12.7 mm. Only circumferential thickness and spacing were varied. Vapour-side,
heat-transfer coefficients were found by subtracting the coolant and wall resistances from the
measured overall thermal resistance. All pin-fin tubes gave higher vapour-side, heat-transfer
coefficients compared to the equivalent integral-fin tube. The best heat-transfer enhancement
was found to be 4.1 which was thought to be on par with the best-reported heat-transfer
enhancement on an optimum integral-fin tube by Wanniarachchi et al. [28]. It was noted that
despite less active area of the pin-fin tubes compared to the equivalent integral-fin tube, pin-fin
tubes outperformed the integral-fin tube. It was suggested due to the fact that in the case of
pin-fin tubes, many small effective surfaces replaced few large surfaces of integral-fin tubes
and these smaller surfaces are far more effective for heat transfer since in gravity-drained
flows, they result in shorter thinner boundary layers, while for surface-tension-driven flows,
these small surfaces produce many more sharp changes in surface curvature, which result in
surface-tension-induced pressure gradients which thin the condensate film. An optimum
circumferential spacing of 1mm was also identified which maximized the heat-transfer rate.

Ali and Briggs [43–46] have reported a comprehensive data for the condensation of R-113 and
ethylene glycol on various pin-fin tubes. Their work has shown superior heat-transfer perfor-
mance of pin-fin tubes (up to 25%) over the equivalent integral-fin tubes (i.e. with the same fin
height, root diameter and longitudinal pin thickness and spacing).

Another useful method to enhance heat transfer on horizontal tubes is by wrapping the wire
on the smooth tube; recently, studies are reported by Ali and Qasim [47, 48].
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3.3. Theoretical studies into condensation heat transfer on enhanced tubes

3.3.1. Tubes with two-dimensional fins

Beatty and Katz [49] were the first to propose a model for condensation heat transfer on
integral-fin tubes. The model assumed the following points:

1. Gravity drains the condensate from the vertical fins and from the tube in the inter-fin
spacing.

2. Surface-tension effects were entirely ignored, that is, the model did not account for capil-
lary retention on the lower part of the tube or enhanced drainage due to surface tension on
the upper part of the tube.

3. The model ignored condensation on the fin tips.

Condensation on the vertical fin flanks was modelled by applying the Nusselt [3] equation for
vertical plates and condensation in the inter-fin spacing was modelled by applying the Nusselt
[3] equation for horizontal tubes. The mean vapour-side, heat-transfer coefficient for the
integral-fin tube was calculated as the area-weighted average of the heat-transfer coefficient
on finned surfaces and on base tube between inter-fin spacing. The following expression was
suggested for the vapour-side, heat-transfer coefficient:

α ¼ c
k3ρ2ghf g
μΔT

" #1=4
Ar

Ad
d−1=4 þ 1:3

Af

Ad
Lf −1=4

� �
(17)

where c is an empirical constant and when was taken as 0.689 by Beatty and Katz, their
experimental data for six low-surface-tension fluids (methyl chloride, SO2, R-22, n-pentane,
propane and n-butane) condensing on several integral-fin tubes (with fin densities from 433 to
633 fpm) were predicted within ±11%. Lf is the effective fin height (average vertical fin height
over the diameter do), and Beatty and Katz took it as

Lf ¼ π
4

do2−d2

do

� �
(18)

Rose [16] pointed out that if the condensate drained from the fin flanks to the inter-fin space
and proceeded to drain around the inter-fin tube surface to the bottom of the tube, then a more
appropriate value of the effective fin height would be half of the Beatty and Katz [49] value
giving

Lf ¼ π
8

do2−d2

do

� �
(19)

Briggs and Rose [50] compared the Beatty and Katz [49] model to the results of many of the
experimental investigations on integral-fin tubes discussed above. The model showed accept-
able agreement for relatively low surface-tension fluids but over-predicted the data for high
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surface-tension fluids such as steam and ethylene glycol. The authors explained that this was
due to the neglect of surface-tension effects in the model.

Gregorig [51] discussed the effect of surface tension and pointed out its vital role in enhancing
condensation heat transfer. His work addressed a vertical fluted surface; a schematic is shown
in Figure 6. The author reported that surface-tension forces are the dominating factor in
determining the heat transfer for fins with a height less than 1.5mm, as surface-tension
induced pressure gradients due to the variation in the curvature of the vapour-liquid interface
of the condensate on the fin. This induced pressure gradient would drain the condensate in the
horizontal direction, over the arc length Sm (see Figure 6). The gravity then drains the accumu-
lated condensate from the channels between the flutes. The pressure gradient in the horizontal
direction is given by

dP
dS

¼ σ
d
dS

1
r

� �
(20)

where S is the distance along the vapour-liquid interface from the tip of the fin and r is the
radius of curvature of the liquid-vapour interface. Gregorig [51] also gave a relation that
described the shape of a convex profile which provides a constant condensate film thickness
over the arc length Sm,

1
r
¼ 1:5βm

Sm
1−

S
Sm

� �2
" #

(21)

Adamek [52] defined a family of convex shapes that use surface tension to drain the film. His
fin curvature was defined as

Figure 6. Fin parameters of vertical-fluted tube (after Gregorig [51]).
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1
r
¼ βm

Sm

ζþ 1
ζ

� �
1−

S
Sm

� �ζ
" #

f or −1 < ζ < ∞ (22)

where each value of ζ gives a different shape of fin profile and a different aspect ratio e=tb. The
Adamek [52] profile for a value of ζ ¼ 2 is identical to the Gregorig [51] profile.

Kedzierski and Webb [53] validated the Gregorig [51] and Adamek [52] theoretical findings.
Using an electrostatic discharge-machining method with a numerical-controlled machine
head, they produced fin profiles for ζ = 2 and -0.5. R-11 was used as condensing fluid and
experimental data agreed with the predictions to within 5%.

Rudy and Webb [54] presented a model to predict condensation heat-transfer coefficient
including the surface-tension effects on fin flanks. Heat transfer through the part of the tube
below the flooding angle was not considered. They totally ignored body-forces (gravity) effects
on the fin flanks and assumed a constant pressure gradient due to surface tension draining the
condensate from the fin flanks into the inter-fin spacing. They took the radius of the curvature
of the condensate surface at the fin tip and fin root as half the fin-tip thickness and fin-root
spacing, respectively. The result was the following expression for the pressure gradient on the
fin flanks:

dP
dx

¼ 2σ
h

1
s
þ 1

t

� �
(23)

Using the above expression to replace the body-force term in the Nusselt expression for the fin
flanks, the following result was proposed for vapour-side, heat-transfer coefficient:

α ¼ 0:728
∅f

π
k3ρhf g
μΔT
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� �� 	1=4
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Honda and Nozu [55] provided a prediction method for heat transfer on horizontal trapezoi-
dal integral-fin tubes. It was pointed out by the authors that an important factor, which had
been ignored in earlier theoretical models, is the non-uniformity of wall temperature, due to
the large difference in heat-transfer coefficients between the unflooded and flooded regions.
Their model incorporated surface tension, gravity and variable wall-temperature effects. The
final expression for average heat-transfer coefficient is based on two regions: unflooded and
flooded. A numerical analysis has been given just for thin film with the help of the following
assumptions:

1. The wall temperature is uniform along the fin.

2. The condensate flow is laminar.

3. The condensate film thickness δ is so small that the inertia term in the momentum equation
and the convection term in the energy equation can be neglected.

4. Circumferential flow on the flanks can be neglected in comparison with radial flow.
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5. Fin height is substantially smaller than the tube outer radius.

The following expression was developed for the condensate film thickness along the fin:

ρ
3μ

d
dx

ρgf x−σ
d
dx

1
r

� �� �
δ3

� 	
¼ k Δ T

δhf g
(25)

f x is the normalized component of gravity and r is the radius of curvature of condensate. It
should be noted that the analysis is just given for the so-called thin-film regions. For unflooded
region, this includes the fin tip, fin corner and fin flank (but not the inter-fin base), whereas for
the flooded region it includes only the fin tip and fin corner.

Finally, the following expression was developed for the average Nusselt number for horizontal
integral-fin tubes:

Nud ¼ Nuduηuð1−~TwuÞ ∅f

π þNudf ηf ð1−~Twf Þ 1− ∅f

π

� �
ð1−~TwuÞ ∅f

π þ ð1−~Twf Þ 1− ∅f

π

� � (26)

~Twu and ~Twf are the dimensionless average wall temperatures at the fin roots in the unflooded
and flooded regions, respectively, and can be determined by solving the problem for circumfer-
ential wall conduction by assuming constant heat-transfer coefficients for the inner surface and
for unflooded and flooded regions on the outer surface and neglecting the interaction with radial
conduction. ηu and ηf are the fin efficiencies in the unflooded and flooded regions, respectively.

Nudu and Nudf are Nusselt numbers for unflooded and flooded regions, respectively.

Honda and Nozu [55] compared their theoretical model with their own experimental data for
the condensation of R-113 and methanol on three integral-fin tubes (see Honda et al. [12]) and
found agreement within ±10%. The same experimental data gave agreement with Beatty and
Katz [49] model within ±20%. They also compared their theoretical model with the experimen-
tal results of previous investigators including for 11 fluids and 22 tubes and found an agree-
ment within ±20%. Briggs and Rose [50] compared the Honda and Nozu [55] model with a
range of experimental data of previous investigators and reported that most of the data agreed
with the model to within 25%.

Rose [16] pointed out that in most of the proposed heat-transfer models, either gravity was
completely neglected when surface-tension-driven drainage was considered on the fin flanks or
only the radial component was included. He also suggested the need for a simple heat-transfer
model, in the form of an algebraic expression akin of Beatty and Katz [49], but including surface-
tension effects. Applying dimensional analysis, the following expression for the mean conden-
sate film thickness was proposed that accounts for both gravity and surface-tension effects:

δ ¼
μ q

hf gρ

� �
Aðρ−ρvÞg

xg
þ Bσ

x3σ

2
4

3
5
1=3

(27)

Heat Exchangers– Advanced Features and Applications110



A and B are constants and found separately for the fin tips, fin flanks and inter-fin space. xg
and xσ are characteristic lengths for gravity and surface-tension-driven flows, respectively.
These characteristic lengths are different for gravity and surface-tension-driven flows. Also,
the mean heat flux, q, through the condensate assuming radial conduction is given as

q ¼ kΔT
δ

(28)

For the fin tip, where there is no retained condensate, the author took the parameters involved
in Eq. (27) as A ¼ 0:7284, xg ¼ do, xσ ¼ t and B ¼ Bt (to be found empirically).

For the unflooded part of the fin flanks, the author took the parameters in Eq. (27) as
A ¼ 0:9434, xg ¼ hv, xσ ¼ h, B ¼ Bf (to be found empirically). hv is the mean vertical fin height
and was approximated as

hv ¼
h∅f

sin∅f
f or ∅f ≤

π
2

(29)

hv ¼
h∅f

2− sin∅f
f or ∅f >

π
2

(30)

where ∅f is the flooding angle measured from the top of the tube.

Finally, for the unflooded part of the tube inter-fin space, the author took the parameters in

Eq. (27) as A ¼ fξð∅Þg3, xg ¼ d, xσ ¼ s, B ¼ Bs (to be found empirically). The function ξð∅Þwas
approximated as

ξð∅Þ ¼ 0:874þ 0:199110−2∅−0:264210−1∅2 þ 0:553010−2∅3−0:136310−2∅4 (31)

From Eqs. (27) and (28) with the appropriate values of A, B, xg, and xσ and neglecting
temperature drop in the fin, the mean surface heat flux for the fin tip, fin flank and inter-fin
space is given as

qtip ¼
ρhf gk3ΔT3

μ
0:7284ðρ−ρvÞg

do
þ Btσ

t3

 !( )1=4

(32)

qf lank ¼
ρhf gk3ΔT3

μ
0:9434ðρ−ρvÞg

hv
þ Bfσ

h3

 !( )1=4

(33)

qint ¼
ρhf gk3ΔT3

μ
fξð∅Þg3ðρ−ρvÞg

d
þ Bsσ

s3

 !( )1=4

(34)

From Nusselt [3], the expression for the heat flux for a plain tube is
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qplain ¼ 0:728
ρhf gk3ΔT3

μ
ðρ−ρvÞg

d

� �( )1=4

(35)

Further, assuming no heat transfer to the flooded and blanked part of fin flanks and inter-fin
space, an enhancement ratio for a pitch length of trapezoidal integral-fin tube over the plain
tube at the same temperature difference was obtained as

εΔT ¼
qtipπdotþ

∅f

π
qflankπðd2o−d2Þð1−f f Þ

2 cosθ þ qintπdsð1−f sÞ
� 	

qplainπdðsþ tÞ (36)

Finally, by substituting Eqs. (32)–(35) for the mean heat flux for fin tip, fin flanks and inter-fin
space into Eq. (36), the following final expression is obtained:

εΔT ¼ dot
dðbþ tÞ

d
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In the above expression, to account for the fact that condensate drainage from the fin flanks
would affect both gravity and surface-tension contributions to the heat transfer at the inter-fin
tube space, a lead constant, Bl, was introduced in the last term. Moreover, the constants Bt, Bf

and Bs did not differ greatly when found separately, which led to the decision to set these
constants equal. Using Bt ¼ Bf ¼ Bs ¼ 0:143 and Bl ¼ 2:96, the model predicted the depen-
dence of enhancement ratio on fin spacing, fin thickness and fin height excellently. The author
pointed out that as the model neglected conduction in the fin, the validity of the model was
expected to decrease with decreasing thermal conductivity of the tube material and also with
increasing slenderness ratio (h/t) of the fin. Briggs and Rose [50] compared the model with a
large range of experimental data reported by different investigators. The model predicted most
of the data for copper tubes in a range of 20%, whereas it poorly performed for steam
condensing on tubes made of bronze with lower thermal conductivity where heat-transfer
enhancement was overestimated.

Briggs and Rose [1] incorporated ‘fin efficiency’ effects into the model of Rose [16] in an
approximate way. This was done by dividing the tube into flooded and unflooded parts. For
the flooded part, the fin flanks were assumed adiabatic to find the heat flux through the fin tip,
qtip, flood. For the unflooded part, the heat flux for inter-fin space, qint, was found using Eq. (34).

For the fin flanks and the fin tip in the unflooded part to account for the temperature varia-
tions, ‘slender fin’ approximation for the conduction problem was used as follows:

Heat Exchangers– Advanced Features and Applications112



ΔTðxÞ
ΔT

¼ cosh½mðh−xÞ� þ ðαtip=mkwÞsinh½mðh−xÞ�
coshðmhÞ þ ðαtip=mkwÞsinhðmhÞ (38)

where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αflank

kwt

� �s
(39)

With the help of the above equations, appropriate expressions including temperature varia-
tions for flank heat flux, qflank, and tip heat flux, qtip, was found for the unflooded area.

Finally, the following expression was proposed to calculate vapour-side, heat-transfer
enhancement ratio:

εΔT ¼
ðπ−∅f Þdotqtip, flood þ∅f dotqtip þ ð1−f f Þ ðd

2
o−d

2Þ
2 qflank

n o
þ∅f ð1−f sÞdsqint

qplainπdðsþ tÞ (40)

In the numerator of Eq. (40), the first term shows heat-transfer rate through the flooded part of
the tube, the second term shows heat-transfer rate through the unflooded part of the fin and
the third term shows heat-transfer rate through the unflooded part of fin spacing. Briggs and
Rose [50] compared the experimental data from different investigations to the predictions of
the Briggs and Rose [1] model. The inclusion of conduction in the fins on the basis of ‘slender
fin theory’ improved the agreement of experimental data for low thermal conductivity tubes (i.
e. bronze tubes condensing steam) with the model.

3.3.2. Tubes with three-dimensional fins

Kumar et al. [40] pointed out that almost all the reported heat-transfer models refer to conden-
sation on integral-fin tubes and there was no analytical model for condensation on pin-fin or
spine integral-fin tubes. They proposed a generalized empirical model to predict the vapour-
side, heat-transfer coefficient for integral-fin as well as pin-fin tubes. They assumed that the heat-
transfer coefficient was a function of fluid properties, tube geometry and condensate mass flow
rate. This resulted in an expression for the vapour-side, heat-transfer coefficient as follows:

α ¼ 0:024ðReÞ−0:333½We�0:3ðYÞ1:4 k3ρ2g
μ2

� �0:333

(41)

where all the constants in Eq. (41) were found empirically using least-square method, Re is the
condensate film Reynolds number given by

Re ¼ 4 _m
μp

(42)

We is the Weber number, the ratio of surface tension and inertia forces in the condensate, and
for pin-fin tubes was estimated as a Pythagorean sum of the Weber numbers for the two
perpendicular faces of the pins as follows:
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We ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
We2l þWe2c

q
(43)

where Wel and Wec are the Webber numbers for the longitudinal and circumferential faces of
the pin and are calculated from

Wel ¼
4σ 1

t þ 1
s

� �
hρg

(44a)

Wec ¼
4σ 1

tc
þ 1

sc

� �
hρg

(44b)

Note that for integral-fin tubes, only longitudinal Weber number is used in Eq. (41).

Y is a function of the tube geometry and is given by

Y ¼ 4Ao

dp
¼ 4π

dp
d2o−d

2

2
þ dotþ dðp−tbÞ

" #
(45)

Kumar et al. [40] compared their own experimental data-condensing steam on two tubes (one
integral fin and one pin fin) and R-134a on five tubes (four integral fins and one pin fin) with
the model and reported an agreement within 15% for most of the experimental data. Cavallini
et al. [56] compared the model to the experimental data for the condensation of steam and
refrigerants on integral-fin tubes reported by previous researchers and concluded that the
model was not appropriate for tubes with heights of more than 1.1 mm and with fin pitches
of more than 1.0 mm or less than 0.5mm for refrigerants and less than 2.0 mm for steam.
Namasivayam [57] also compared the model to the experimental data of steam and R-113 on
integral-fin tubes and agreed with the conclusions of Cavallini et al. [56].

Belghazi et al. [58] presented a model for a specially designed three-dimensional Gewa C+ tube
containing notches around the fin. The tube circumference was divided into flooded and
unflooded regions. The authors further divided fin pitch into four regions. It was assumed
that for certain regions (i.e. the regions between notches and above notches) surface tension
will be the draining force and for other regions (i.e. the region below notches and inter-fin tube
space) gravity will be the draining force. Nusselt [3] theory was applied to find the heat-
transfer coefficients for the gravity-based drainage regions. By replacing ðρgÞ in the Nusselt
theory with the following expression, surface-tension effects were included in their model:

dFσ
dV

≈
σ
h

1
rb
−
1
rt

� �
(46)

where dFσ
dV is the volume force, rb and rt are the radii of curvature of the condensate film liquid-

vapour interface at the fin bottom and fin tip, respectively.

The authors compared their model with their own experimental data, for R-134a condensing
on a Gewa C+ tube. The model predicted most of the experimental data to within –10%. This
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model uses a linear pressure variation technique to account for surface-tension effects and
totally ignores gravity effects on the fin notches and above, but still shows a good agreement
with experimental data. This might be due to overestimation of surface-tension effects com-
pensating for the absence of gravity.

Ali and Briggs [2] developed a simple semi-empirical correlation accounting for the combined
effect of gravity and surface tension for condensation on horizontal pin-fin tubes. The model
divided the heat-transfer surface into five regions, that is, two types of pin flank, two types of
pin root and the pin tip (Figure 7). The following equation was proposed to calculate heat-
transfer enhancement:

εΔT ¼ 2tct
0:728πdðsþ tÞ∑

n=2

i¼1
0:9434 sin∅

d
tc
þ Btip

d
tct

2ðtcþtÞ
� �3 σ~ρ g

2
64

9>=
>;
3
75
1=4

þ 4ht
0:728πdðsþ tÞ∑

j=2

i¼1
0:9434j cos∅j d

h
þ Bflank1

d

ht
2ðhþtÞ
� �3 σ~ρ g

2
64

9>=
>;
3
75
1=4

þ 4htc
0:728πdðsþ tÞ∑

j=2

i¼1
0:9434

d
htc

j
ffiffiffiffiffiffiffiffiffiffi
h2þtc2

p
sin ð∅þβÞj

þ Bflank2
d

htc
2ðtcþhÞ
� �3 σ~ρ g

2
64

9>=
>;
3
75
1=4

þ ∅f s
0:728πðsþ tÞ fξð∅f Þg3 þ Broot1

d
∅f ds
2tcj

� �3 σ~ρ g

2
64

9>=
>;
3
75
1=4

þ 2sct
0:728πðsþ tÞ∑

j=2

i¼1
0:9434 sin∅

d
sc
þ Broot2

d
sc
2

� �3 σ~ρ g

" )#1=4
(47)

In Eq. (47), ∅, β and j can be calculated using Eqs. (48)–(50). Only two thermophysical
properties are involved in the expression of enhancement ratio, that is, surface tension, σ, and
condensate density, ρ.

∅ ¼ i
n=2

π (48)

β ¼ tan −1ðtc=hÞ (49)

j ¼ n
∅f

π
(50)

The model gave good overall agreement to within ±20% with the experimental data, as well as
correctly predicted the dependence of heat-transfer enhancement on the various geometric
parameters and fluid types.
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4. Conclusions

Extensive experimental work has been performed on integral-fin tubes and has shown that
geometry is not the only point of interest for the enhancement of heat transfer. Researchers
have reported the optimum fin dimensions for a range of condensing fluids [24–26, 28, 30]. The
work of Honda et al. [12] successfully predicts the condensate retention on integral-fin tubes.
Reliable heat-transfer models (e.g. [1, 55]) accounting for the combined effects of surface
tension and gravity on heat transfer have been developed and are readily available for design
engineers.

A reasonable amount of experimental work is reported on condensation heat transfer on
enhanced pin-fin tubes. Work of previous researchers has shown the superior performance of
such tubes over equivalent integral-fin tubes. The extent of condensate retention and formation
of many sharp surfaces enhancing surface-tension effects on pin-fin tubes are identified to be
the important parameters contributing towards the heat-transfer enhancement. The model
presented by Ali and Briggs [2] is available to predict heat transfer on the pin-fin tubes
reasonably by accounting the effect of both gravity and surface-tension condensate drainage.

Nomenclature

A constant in Eq. (27)

Ad outside surface area of a smooth tube with outside diameter, d

Af surface area of fin flank

Ar surface area of inter-fin spacing

Figure 7. Schematic representation of pin-fin tube identifying five regions for heat transfer (after Ali and Briggs [2]).
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B constant in Eq. (27)

Bf empirical constant in Eq. (33)

Bflank1 empirical constant for pin flank 1

Bflank2 empirical constant for pin flank 2

Bl empirical lead constant in Eq. (37)

Broot1 empirical constant for root 1

Broot2 empirical constant for root 2

Bs empirical constant in Eq. (34)

Bt empirical constant in Eq. (32)

Btip empirical constant for pin tip

b fin spacing at fin tip or longitudinal pin spacing at pin tip

c constant in Eq. (17)

d outside diameter of plain tube or fin or pin-root diameter of finned or pinned tube

do fin or pin-tip diameter of fin or pin tube

e fin height of convex profile

Fσ surface-tension force of condensate

f f blanked proportion of the fin flank for unflooded part of the fin tube

f s blanked proportion of the inter-fin space for unflooded part of the fin tube

f x normalized component of gravity (i.e. in horizontal plane)

g specific force of gravity

j number of pins in unflooded region

h fin or pin height

hf g specific enthalpy of vapourization

hv mean vertical fin or pin height

k thermal conductivity of condensate

kw thermal conductivity of tube wall

L length of flat plate

Lf mean vertical fin height over diameter do defined by Beatty and Katz [49]

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2αflank=kwtÞ

p
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_m mass flow rate of condensate

Nud average Nusselt number by Honda and Nozu [55] model, defined by Eq. (26)

Nudf Nusselt number for flooded region, Honda and Nozu [55]

Nudu Nusselt number for unflooded region, Honda and Nozu [55]

NuP vapour-side Nusselt number for a vertical plate

NuT vapour-side Nusselt number for a horizontal tube

n total number of pins per circumference

p fin pitch

Q total heat-transfer rate through the test tube

q heat flux on outside of the test tube

qflank heat flux to fin flank in unflooded part of the tube

qint heat flux to inter-fin spacing in unflooded part of the tube

qplain heat flux through plain or smooth tube

qtip heat flux to fin tip

qtip, flood heat flux to fin tip in flooded part of the tube

Re condensate Reynolds number

Ro fin or pin-tip radius

Rr fin or pin-root radius

r radius of curvature of the vapour-liquid interface

rb radius of curvature of the vapour-liquid interface at fin bottom

rt radius of curvature of the vapour-liquid interface at fin tip

S distance along the vapour-liquid interface measured from the fin tip

Sm total fin arc length

s fin spacing at fin root or longitudinal pin spacing at pin root

sc circumferential pin spacing

~Twf dimensionless average wall temperatures at fin root in flooded region

~Twu dimensionless average wall temperatures at fin root in unflooded region

t fin-tip thickness or longitudinal pin-tip thickness
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tb fin-base thickness or longitudinal pin-base thickness

tc circumferential pin thickness

V volume of condensate

We Weber number

Wec Weber number for circumferential face of the pin defined by Eq. (44b)

Wel Weber number for longitudinal face of the pin defined by Eq. (44a)

x distance along the vapour-liquid interface measured from the fin tip

xg characteristic length for gravity-driven flow in Rose [16] model

xσ characteristic length for surface-tension-driven flow in Rose [16] model

Y function of geometric parameters defined by Eq. (45)

Greek Letters

α mean vapour-side, heat-transfer coefficient

β angle defined by Eq. (49)

βm maximum arc angle

ΔT temperature difference across the condensate film

δ condensate film thickness

εΔT vapour-side, heat-transfer enhancement ratio, heat flux for finned or pinned tube
based on fin or pin-root diameter divided by heat flux for smooth tube with the
same fin/pin-root diameter, at the same vapour-side, temperature difference

ζ fin or flute-shape parameter used in Adamek [52] expression

ηf fin efficiency for flooded region

ηu fin efficiency for unflooded region

μ dynamic viscosity of condensate

ξ active-area enhancement ratio for fin or pin tube

ξð∅Þ function given by Eq. (31)

ρ density of condensate

ρv density of vapour

~ρ ρ−ρv

σ surface tension
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θ fin or pin-tip half angle

∅ angle measured from the top of a fin or a pin tube

∅f condensate flooding or retention angle measured from the top of a fin or a pin tube
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