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Abstract

In this chapter, the heat transfer between supercritical fluid flows and solid walls and
that between compressible flows and solid walls is described. First, the physical funda-
mentals of supercritical fluids and compressible flows are explained. Second, methods
for estimating the heat-transfer performance according to the physical fundamentals
and conventional experimental results are described. Then, the known correlations for
estimating the heat-transfer performance are introduced. Finally, examples of practical
heat exchangers using supercritical fluid flows and/or compressible flows are presented.

Keywords: supercritical fluid flow, compressible flow, nusselt number, reynolds number,
mach number, pressure coefficient distribution

1. Introduction

The range of use of heat exchangers is being expanded to extensive applications in various
fields. In particular, supercritical fluids and high-speed air, that is,, compressible fluids, are
suitable as working fluids.

Supercritical fluid is a phase of substances, in addition to the solid, liquid, and gas phases.
In particular, in the vicinity of the critical point, many physical properties behave in an
unusual way. For example, the density, viscosity, and thermal conductivity drastically change
at the critical point, the specific heat and thermal expansion ratios diverge at the critical point,
and the sound velocity is zero at the critical point. The physical properties of a supercritical
fluid must be evaluated by the appropriate equation of state and equation of the transport
properties.

On the other hand, a compressible flow can be assumed as an ideal gas, but additional
dynamic energy, that is, the Mach-number effect, must be considered. Therefore, three types
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of pressures (static, total, and dynamic), four types of temperatures (static, total, dynamic, and
recovery), the difference between laminar and turbulent boundary layers, etc., should be
distinguished and treated.

2. Equations of state and transport properties of supercritical fluid

Figure 1 shows the P–T diagram of a pure substance (water in this case), which is also called a
phase diagram. The sublimation curve divides the solid and gas phases, the melting curve
divides the solid and liquid phases, and the vaporization curve divides the liquid and gas
phases. Two phases coexist on these three curves. When the pressure and/or temperature
change across these three coexistence curves of solid-gas, solid-liquid, and liquid-gas, the
density discontinuously changes. These three coexistence curves meet at the triple point, which
is the unique point where solid, liquid, and gas coexist in equilibrium.

The vaporization curve ends at the critical point. On the vaporization curve, liquid is called the
saturation liquid, and gas is called the saturation gas (vapor). When approaching the critical
point along the vaporization curve, the density of the saturation liquid decreases, and the
density of the saturation gas (vapor) increases. Finally, they meet at the critical point. Fluid
overtaking the critical point in temperature and pressure is called the “supercritical fluid.”

Figure 1. Phase chart on P-T diagram (for water).

Heat Exchangers– Advanced Features and Applications126



The phase is thermodynamically determined by the Gibbs free energy G:

G ¼ H−TS ¼ U−TSþ PV (1)

Where H is the enthalpy, S is the entropy, U is the internal energy, and V is the specific
volume [1].

That is, the phase is determined by the balance between the diffusivity caused by the thermal
mobility of the molecules and the condensability by intermolecular forces. The diffusivity
caused by thermal mobility increases with the temperature. The condensability by
intermolecular forces increases with the density. In general, the following relationships hold:

In Figure 1, the first-order differentials of the Gibbs free energy

dG ¼ −SdT þ VdP (2)

dG
dT

� �
P
¼ −S (3)

dG
dP

� �
T
¼ V ¼ 1

ρ
(4)

are discontinuous across the three coexistence curves, but the first-order differentials of the
Gibbs free energy are continuous at the critical point. In addition, the second-order differen-
tials of the Gibbs free energy are discontinuous at the critical point.

d2G
dT2

� �
P
¼ −

1
T

dH
dT

� �
P
¼ −

1
T
CP (5)

d2G
dP2

� �
T
¼ dV

dP

� �
T
¼ −VKT (6)

Here, ρ is the density, CP is the isobaric specific heat, and KT is the isothermal compressibility.
At the critical point, the density drastically changes, the specific heat and thermal expansion
ratio diverge, and the sound velocity is zero.

Figures 2 and 3 show the isobaric and isothermal changes of the density, viscosity, and
kinematic viscosity by using the data from references [2, 3]. Both the density (derived from

Solid Diffusivity << condensability

Liquid Diffusivity < condensability

Supercritical fluid Diffusivity ≈ condensability

Gas (vapor) Diffusivity > condensability

Gas (ideal gas) Diffusivity >> condensability
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the equation of state) and the viscosity (derived from the equation of the transport properties)
drastically change at the critical point, and the derivatives with respect to temperature and
pressure diverge at the critical point. The kinematic viscosity (combined with the density and
viscosity) has an extremum value at the critical point. The equations of state and the transport
properties should consider these types of tricky features in the vicinity of the critical point for
transcritical- and supercritical-fluid flows.

The most important substances in practical applications are carbon dioxide and water, although
all substances have a supercritical-fluid phase. Recently, accurate correlations for the equations of
state and the transport properties containing the critical point have been proposed.

For carbon dioxide, Span and Wagner proposed the equation of state from the triple point to
1100 K at pressures up to 800 MPa [2]. Their equation of state is briefly introduced here. They
expressed the fundamental equation in the form of the Helmholtz energy A:

A ¼ U−TS ¼ H−RT−TS (7)

with two independent variables—the density ρ and temperature T. The dimensionless Helm-

holtz energy φ ¼ A=RT is divided into a part obeying the ideal gas behavior φ
�
and a part that

deviates from the ideal gas behavior φr [2]:

Figure 2. Isobaric changes of the density, viscosity, and kinematic viscosity near the critical point where Tcritical = 304.1282
K and Pcritical = 7.3773MPa (for carbon dioxide).

Figure 3. Isothermal changes of the density, viscosity, and kinematic viscosity near the critical point where Tcritical =
304.1282K and Pcritical = 7.3773MPa (for carbon dioxide).
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φðδ, τÞ ¼ φ
� ðδ, τÞ þ φrðδ, τÞ; (8)

Where δ ¼ ρ=ρc is the reduced density; τ ¼ Tc=T is the inverse reduced temperature; and ρc

and Tc are the density and temperature, respectively, at the critical point. Then, all of the other
thermodynamic properties can be obtained by the combined derivatives of Eq. (7) using the
Maxwell relations [1].

Pressure

PðT,ρÞ ¼ −
∂A
∂V

� �
T
then

Pðδ, τÞ
ρRT

¼ 1þ δφr
δ (9)

Entropy

SðT,ρÞ ¼ −
∂A
∂T

� �
V
then

Sðδ, τÞ
R

¼ τ½φ�
τ þ φr

τ�−φ
�
−φr (10)

Internal energy

UðT,ρÞ ¼ A−T
∂A
∂T

� �
V
then

Uðδ, τÞ
RT

¼ τ½φ�
τ þ φr

τ� (11)

Isochoric specific heat

CVðT,ρÞ ¼ ∂U
∂T

� �
V
then

CVðδ, τÞ
R

¼ −τ2½φ�
ττ þ φr

ττ� (12)

Enthalpy

HðT,ρÞ ¼ A−T
∂A
∂T

� �
V
−V

∂A
∂V

� �
T
then

Hðδ, τÞ
RT

¼ 1þ τ½φ�
τ þ φr

τ� þ δφr
δ (13)

Isobaric specific heat

CPðT,ρÞ ¼ ∂H
∂T

� �
P
then

CPðδ, τÞ
R

¼ −τ2½φ�
ττ þ φr

ττ� þ
½1þ δφr

δ−δτφ
r
δτ�2

1þ 2δφr
δ þ δ2φr

δδ

(14)

Saturated specific heat

CσðTÞ ¼ ∂H
∂T

� �
P
þ T

∂P
∂T

� �
V

∂Psat

∂T

� �
=

∂P
∂V

� �
Tsat

(15)

then,

Cσðδ, τÞ
R

¼ −τ2½φ�
ττ þ φr

ττ� þ
1þ δφr

δ−δτφ
r
δτ

1þ 2δφr
δ þ δ2φr

δδ

f1þ δφr
δ−δτφ

r
δτg−

ρc

Rδ
dPsat

dT

� �
(16)

Speed of sound
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wðT,ρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂P
∂ρ

� �
S

s
then

w2ðδ, τÞ
RT

¼ 1þ 2δφr
δ þ δ2φr

δδ−
½1þ δφr

δ−δτφ
r
δτ�2

τ2½φ�
ττ þ φr

ττ�
(17)

etc.

Here,

φδ ¼
∂φ
∂δ

� �
τ

, φδδ ¼
∂2φ

∂δ2

� �
τ

, φτ ¼
∂φ
∂τ

� �
δ

, φττ ¼
∂2φ
∂τ2

� �
δ

and φδτ ¼
∂2φ
∂δ∂τ

� �
:

For carbon dioxide, Vesovic et al. proposed transport properties in the temperature range of
200–1500 K for the viscosity μ and in the temperature range of 200–1000 K for the thermal
conductivity k [3]. Their equations of the transport properties μ and k are briefly introduced.
Their fundamental equation combines three independent parts: a part obeying the ideal gas
behavior μ

� ðTÞ and k
� ðTÞ, a part with excess properties because of the elevated density

Δμðρ,TÞ and Δkðρ,TÞ, and a part with an enhancement in the vicinity of the critical point
ΔcμðTÞ and ΔckðTÞ:

μðρ,TÞ ¼ μ
� ðTÞ þ Δμðρ,TÞ þ ΔcμðTÞ (18)

kðρ,TÞ ¼ k
� ðTÞ þ Δkðρ,TÞ þ ΔckðTÞ (19)

For water, Wagner and Pruß proposed the equation of state for the temperature range of 251.2–
1273 K and pressures up to 1000 MPa [4]. Huber et al. proposed the transport properties from
the melting temperature to 1173 K at 1000 MPa [5, 6].

3. Heat transfers between supercritical fluid flow and solid

As mentioned in Section 2, the kinematic viscosity of a supercritical fluid is less than those of a
liquid and gas; therefore, the Reynolds number, Re, of a supercritical fluid flow is higher than
those of a liquid and gas flow with the same velocity, and a turbulent flow is easily formed. For
heat transfer in a turbulent flow, Dittus and Boelter proposed a correlation of the Nusselt
number using the Re and Prandtl number, Pr, for a liquid flow in a circular automobile
radiator [7] as shown in Figure 4.

Nulocal, turb ¼ 0:023Re0:8localPr
n
local (20)

Relocal ¼ ulocalD
νlocal

¼ ρlocalulocalD
μlocal

¼ 4m
πDμlocal

(21)

Prlocal ¼ νlocal
κlocal

¼ μlocalCP, local

klocal
(22)

Here, the superscript n ¼ 0:3 for Twall < Tfluid or n ¼ 0:4 for Twall > Tfluid, ulocal is the average
velocity across the cross section, D is the diameter of the tube, μ is the viscosity, m is the mass
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flow rate, κ is the thermal diffusivity, and k is the heat conductivity. For liquid and gas flows,
the fluid properties and flow conditions can be regarded as constant throughout the entire
region in most practical cases because the fluid properties are insensitive to temperature and
pressure changes in the tube. Therefore, the inlet values of the physical properties and flow
conditions can be used, and Re and Pr can be regarded as constant throughout the entire tube.
On the other hand, the fluid properties of a supercritical fluid are very sensitive to temperature
and pressure changes in the tube. Thus, in the tube, the density gradually changes because of
the heat input and/or pressure loss, the local average velocity changes, and even Re and Pr
change. Unfortunately, the Dittus-Boelter correlation with the inlet values of the physical
properties and flow conditions cannot be directly used for heat transfer in a supercritical
turbulent flow. Liao and Zhao measured the rate of the heat transfer between a supercritical
carbon dioxide flow and a circular solid tube wall for Twall < Tfluid [8]. Their tube was set in the
horizontal direction. They proposed a correlation of area-averaged Nusselt numbers as func-
tions of the Reynolds and Prandtl numbers defined at the temperatures of the mean bulk and
the wall.

Nuave, turb ¼ 0:128Re0:8wallPr
0:3
wall

Gr
Re2bulk

" #0:205
ρbulk

ρwall

� �0:437 CP,bulk

CP,wall

� �0:411
forCO2 (23)

Gr ¼ ½ρwall−ρbulk�ρbulkgD
3

μ2
bulk

(24)

Rebulk ¼ 4m
πDμðTbulk,PbulkÞ (25)

ρbulk ¼ ρðTbulk,PbulkÞ (26)

μbulk ¼ μðTbulk,PbulkÞ (27)

Rewall ¼ 4m
πDμðTwall,PwallÞ (28)

Prwall ¼ νðTwall,PwallÞ
κðTwall,PwallÞ ¼

μðTwall,PwallÞCPðTwall,PwallÞ
kðTwall,PwallÞ (29)

Figure 4. Heat transfer between a supercritical fluid flow and a circular solid tube wall.
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ρwall ¼ ρðTwall,PwallÞ (30)

CP,wall ¼ CPðTwall,PwallÞ (31)

CP,bulk ¼ CPðTbulk,PbulkÞ (32)

Here, Tbulk ¼ ½Tin þ Tout�=2 and Twall are constant. This correlation is applicable in the range of
7.4 MPa <Pbulk < 12.0 MPa, 20�C < Tbulk< 110�C, 2�C < Tbulk−Twall < 30�C, 0.02 kg/min < _m < 0.2
kg/min, 1025 < Gr=Re2bulk < 1022 for the horizontal long tubes of 0.50 mm <d < 2.16 mm.Re0:8wall

and Pr0:3wall were originally derived from the Dittus-Boelter correlation. Gr=Re2bulk is the effect of
buoyancy in the radial direction of a horizontal tube. The density of fluid at a temperature and
pressure in the vicinity of the critical point is very sensitive to changes in temperature; thus, the
effect of the buoyancy derived from the temperature difference between the bulk and wall
cannot be ignored. This effect is enhanced as the diameter of the tube increases.

Ito et al. proposed an airfoil heat exchanger, which is applied between a compressible airflow
and a liquid or a supercritical fluid flow [9]. It has an outer airfoil shape suitable for high-speed
airflow and contains several tubes for a high-pressure liquid or a supercritical fluid flow. The
researchers installed a cascade of airfoil heat exchangers into a subsonic wind tunnel at a
temperature of Tair and measured the heat-transfer coefficient of a liquid or a supercritical
fluid flow at a temperature of Tscf < Tair in a vertical tube. They derived correlations for
supercritical carbon dioxide and compressed water at a pressure of Pscf≤30 MPa as follows:

Nuave, turb ¼ 0:0230Re0:808Pr0:300 forH2O
0:0231Re0:823Pr0:300 forCO2

�
(33)

These correlations are very simple and similar to the Dittus-Boelter correlation in Eq. (20) but
have sufficient accuracy. Ito et al. used accurate equations of state and the transport properties,
as mentioned in Section 2. They said in reference [9] that ordinary correlations (of course,
containing the Dittus-Boelter correlation) for liquid and gas can be used when sufficiently
accurate equations of state and the transport properties are used. However, the physical
properties at a temperature and pressure in the vicinity of the critical point continuously
change throughout the tube because of the heat input and/or pressure loss; therefore, changes
in these physical properties throughout the tube should be sufficiently considered. For exam-
ple, the present author recommends the numerical integration of local heat transfer correla-
tions using local accurate physical properties for the entire tube.

4. Thermofluid dynamics of compressible flow on solid wall

4.1. Meanings of temperature and pressure of compressible flow

A stationary fluid pressure of P [Pa], specific volume of V [m3/kg], and constant temperature T
stores a mechanical energy of epre [J/kg]. Here,

Heat Exchangers– Advanced Features and Applications132



epre ¼ PV: (34)

The “pressure” (often called “static pressure”) P is the potential of the mechanical energy
level contained in a stationary fluid. A motional fluid has an additional dynamic energy edyn
[J/kg]:

edyn ¼ 1
2
u2: (35)

.in addition to epre; therefore,

epre þ edyn ¼ PV þ 1
2
u2 ¼ V½Pþ Pdyn� ¼ VPtot ¼ emech: (36)

Pdyn ¼ 1
2V

u2 ¼ 1
2
ρu2: (37)

Ptot ¼ Pþ Pdyn: (38)

.Here, Pdyn [Pa] is called “dynamic pressure” and is an index of the dynamic mechanical energy
level contained in a motional fluid. Further, emech [J/kg] is called “total mechanical energy.”
Moreover, Ptot [Pa] is called the “total pressure” and is an index of the total mechanical energy
level contained in a motional fluid. Some processes are reversible between mechanical energies
of epre and edyn in cases where epre and edyn transform in the equilibrium processes. For
example, using a nozzle, Pdyn increases, P decreases, and Ptot is constant in an acceleration
section, and Pdyn decreases, P increases, and Ptot is constant in a deceleration section. Some
process are irreversible between epre and edyn in cases where epre and edyn transform in
nonequilibrium processes. For example, because of friction, P remains constant, Pdyn

decreases, and Ptot also decreases.

Next, we consider thermal energy. A stationary fluid at an isochoric specific heat of CV [J/(kg K)]
stores a relative internal energy of e [J/kg] from e0 at the standard temperature T0:

e−e0 ¼ ∫
T

T0

CVdT: (39)

.Here, the internal energy is an index of the thermal energy level contained in a stationary fluid.
In the case of a constant CV,

e−e0 ¼ CV½T−T0�: (40)

The “temperature” (often called “static temperature”) T is an index of the energy level
contained in a stationary fluid.

In cases where a fluid is assumed as an ideal gas,
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PV ¼ RT⇔P ¼ ρRT; (41)

where R is the gas constant, and ρ is the density, which is equal to 1=V . Then,

R ¼ Pv
T

¼ P0v0
T0

(42)

.A stationary fluid at an isochoric specific heat of CV [J/(kg K)] stores a relative enthalpy of
h [J/kg] from h0 at the standard temperature of T0, a pressure of P0, and a specific volume
of V0. Videlicet, enthalpy is a combination of internal energy and mechanical energy.
Here,

h−h0 ¼ ½eþ PV�−½e0 þ P0V0� ¼ ∫
T

T0

CVdT þ ∫
T

T0

RdT: (43)

In the case of a constant CV,

h−h0 ¼ CV½T−T0� þ R½T−T0� ¼ CP½T−T0�; (44)

CP ¼ CV þ R; (45)

where CP is the isobaric specific heat. A motional fluid has an additional dynamic energy edyn
[J/kg], as shown in Eq. (35). If a motional fluid suddenly stops, dynamic energy can be
converted into enthalpy. Then, the following equation applies:

h−h0 þ edyn ¼ CP½T−T0� þ 1
2
u2 ¼ CP½T þ Tdyn−T0� ¼ CP½Ttot−T0�: (46)

Tdyn ¼ 1
2CP

u2: (47)

Ttot ¼ T þ Tdyn: (48)

Here, Tdyn [K] is called the “dynamic temperature” and is an index of the dynamic energy level
contained in a motional fluid. Moreover, Ttot [K] is called the “total temperature” and is an
index of the total energy level contained in a motional fluid. Some processes are reversible
between mechanical energies of h and edyn in cases where edyn transforms into PV in equilib-
rium processes. For example, using a nozzle, in an acceleration section, Tdyn increases, h
decreases, Ttot is constant, and vice versa. Some processes are irreversible in cases where edyn
transforms into CVT in nonequilibrium processes. For example, because of friction, Tdyn

decreases, T increases, and Ttot remains constant; however, T cannot be converted into Tdyn

again.
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4.2. Isentropic change and sound speed of ideal gas

The specific heat ratio γ is defined as:

γ ¼ CP

CV
(49)

.From Eqs. (45) and (49),

CV ¼ R
γ−1

, CP ¼ γR
γ−1

(50)

This equation is substituted into Eqs. (40) and (44). Then,

e−e0 ¼ R
γ−1

½T−T0�, h−h0 ¼ γR
γ−1

½T−T0� (51)

de ¼ R
γ−1

dT, dh ¼ γR
γ−1

dT (52)

The change in the entropy ds is defined as:

Tds ¼ deþ pdV,Tds ¼ dh−VdP (53)

ds ¼ deþ pdV
T

, ds ¼ dh−VdP
T

(54)

When isentropic change ds ¼ 0,

0 ¼ ds ¼ CV
dT
T

þ R
dV
V

, 0 ¼ ds ¼ CP
dT
T

−R
dP
P

(55)

0 ¼ R
γ−1

dT
T

−R
dρ
ρ
, 0 ¼ γR

γ−1
dT
T

−R
dP
P

(56)

1
γ−1

dT
T

¼ dρ
ρ
,

γ
γ−1

dT
T

¼ dP
P

(57)

We totally differentiate Eq. (41), obtaining the following:

dP ¼ RTdρþ ρTdRþ ρRdT (58)

dP
P

¼ dρ
ρ

þ dR
R

þ dT
T

¼ dρ
ρ

þ dT
T

⇔
dT
T

¼ dP
P

−
dρ
ρ

(59)

We substitute the final equation of Eq. (59) and Eq. (45) into the rightmost part of Eq. (55):
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0 ¼ ds ¼ CP
dT
T

−R
dP
P

¼ CP
dP
P

−CP
dρ
ρ
−R

dP
P

¼ CV
dP
P

−CP
dρ
ρ

(60)

0 ¼ R
γ−1

dP
P

−
γR
γ−1

dρ
ρ

(61)

γ
dρ
ρ

¼ dP
P

(62)

dP
dρ

¼ γ
P
ρ

(63)

We integrate Eqs. (57) and (62):

T
ργ−1 ¼ const,

T

P
γ−1
γ

¼ const,
P
ργ ¼ const (64)

The sound speed a is defined as:

a2 ¼ dP
dρ

� �
S

(65)

Eqs. (63) and (41) are substituted into Eq. (65), yielding the following:

a2 ¼ γ
P
ρ
¼ γRT (66)

4.3. Relationships of static and total values in isentropic compressible flow

The one-dimensional energy equation of an isentropic flow at an arbitrary cross section is
derived by using Eq. (46) as:

hþ 1
2
u2 ¼ const (67)

When the enthalpy and velocity are h1 and u1 at an arbitrary cross section 1,

h1 þ 1
2
u21 ¼ hþ 1

2
u2 (68)

This relationship is true even if cross section 1 corresponds to the stagnant cross section 0 (h0
and u0 ¼ 0); therefore,

h0 ¼ hþ 1
2
u2 (69)

Eqs. (44) and (50) are substituted into Eq. (69), yielding the following:
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γRT0

γ−1
¼ γRT

γ−1
þ 1
2
u2 (70)

Eq. (66) is substituted into Eq. (70):

a20
γ−1

¼ a2

γ−1
þ 1
2
u2 (71)

We multiply by γ−1
a2 and substitute Eq. (66), obtaining the following:

a20
a2

¼ RT0

RT
¼ T0

T
¼ 1þ γ−1

2
u2

a2
(72)

At the stagnant cross section 0, the static temperature T0 is equal to the total temperature Ttot;
therefore,

Ttot

T
¼ 1þ γ−1

2
M2, T ¼ Ttot

1þ γ−1
2 M2

, (73)

where M is the local Mach number. From Eqs. (64) and (73),

Ptot

P
¼ T

γ
γ−1
tot

T
γ
γ−1

¼ Ttot

T

� � γ
γ−1

¼ 1þ γ−1
2

M2
� � γ

γ−1

,P ¼ Ptot

1þ γ−1
2 M2

h i γ
γ−1

(74)

4.4. Relationships of local Mach number, pressure and temperature of flows on
adiabatic walls

Figure 5 shows the pressure distribution on a plane and an airfoil. On both the plane and the
airfoil, boundary layers are formed. The pressure Plocal,bound in a boundary layer is almost
equal to the pressure Plocal,main in a main flow outside of the boundary layer; therefore, the
pressure in a boundary layer can be expressed by using relationships of the isentropic main
flow. That is, Plocal,bound ¼ Plocal,main. Afterwards, both the pressures are expressed as Plocal.

The pressure distribution on a solid wall is usually expressed by pressure coefficient Slocal,
which is defined as:

Slocal ¼ Ptot, in−Plocal
1
2ρu

2
in

,Plocal ¼ Ptot, in−
1
2
ρu2inSlocal (75)

but is sometimes expressed by another pressure coefficient ηlocal, which is defined as:

ηlocal ¼
Pin−Plocal

1
2ρu

2
in

,Plocal ¼ Pin−
1
2
ρu2inηlocal: (76)

The two expressions are related as follows:
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Slocal ¼ Ptot, in−Plocal
1
2ρu

2
in

¼ Ptot, in−Pin þ Pin−Plocal
1
2ρu

2
in

¼
1
2ρu

2
in þ Pin−Plocal

1
2ρu

2
in

¼ 1þ ηlocal: (77)

On a plane, Slocal is unity everywhere; thus, Plocal is constant everywhere. On the other hand,
on an airfoil, Slocal varies with the location; thus, Plocal varies.

Figure 6 shows the temperature distribution on an adiabatic plane and an airfoil. In flows on
an adiabatic wall, the total temperature Ttot, local remains constant at the inlet total temperature
Ttot, in. For incompressible flows, that is, with the Mach number Mlocal ¼ 0, the static tempera-
ture Tlocal is always the same as Ttot, local. Then, Tlocal remains constant everywhere on both an
adiabatic plane and an airfoil. On the other hand, for compressible flows, the Mach number
Mlocal varies according to the following equation, which is derived from Eq. (74):

Mlocal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

γ−1
Ptot, local

Plocal

� �γ−1
γ

−1

( )vuut (78)

Here, the static temperature Tlocal varies with respect to Mlocal for compressible flows.

Tlocal ¼ Ttot, local

1þ γ−1
2 M2

local

(79)

On an adiabatic plane, Mlocal is constant. Thus, Tlocal remains constant anywhere on an adia-
batic plane, even in cases of compressible flows. On the other hand, on an adiabatic airfoil,
Mlocal varies with the location; therefore, Tlocal varies in cases of compressible flows.

Figure 5. Pressure distributions of flows on a plane and an airfoil.
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4.5. Recovery temperature definition in boundary layer in compressible flow on adiabatic,
heating and cooling walls

Eckert surveyed and organized the heat transfer in a boundary layer in a compressible flow on
a wall [10]. In a boundary layer on an adiabatic plane, the adiabatic-wall temperature reaches
Tr. This is called the “recovery temperature.” Figure 7 shows a schematic of the total temper-
ature Ttot and static temperature T profiles, as well as the recovery temperature Tr in the
vicinity of an adiabatic solid surface with a boundary layer in a compressible flow. As
described in Section 4.1, a compressible flow has a measurable dynamic energy; then, the static
temperature T in a boundary layer increases because of the braking effect, which converts a
dynamic energy to a thermal energy. At the same time, heat generated by the braking effect
conducts to the outside of the boundary layer. Therefore, the static temperature T and total
temperature Ttot in the boundary layer approach the recovery temperature Tr on the wall, as
shown in the middle in Figure 7.

In cases where a thermal boundary layer is completely inside a momentum boundary layer,
that is, Pr ≥ 1 the heat generated by the braking effect uses the rise of the static temperature T..
The recovery temperature Tr on an adiabatic wall is equal to the total temperature Ttot,main of
the main flow outside of the boundary layer. On the other hand, in cases where a thermal
boundary layer protrudes from the edge of a momentum boundary layer, that is, Pr < 1, only
part of the heat generated by the braking effect uses the rise of the static temperature T; then,
the recovery temperature Tr on an adiabatic wall has an intermediate value between the total
temperature Ttot,main and the static temperature Tmain of the main flow outside of the boundary
layer. Eckert proposed an equation for the local recovery temperature Tr, local on an adiabatic
wall.

Figure 6. Temperature distributions of flows on an adiabatic plane and an airfoil.
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Tr, local ¼ Tmain þ ½Ttot,main−Tmain�rlocal ¼ Tmain þ Tdyn,mainrlocal (80)

rlocal ¼ minð1,Pr1=2Þ for a laminar boundary layer
minð1,Pr1=3Þ for a turbulent boundary layer

�
(81)

Here, rlocal is the “temperature recovery factor,” which is the ratio of the recovery temperature
to the dynamic temperature of the main flow. Eckert mentioned that heat flux qlocal in a
boundary layer in a compressible flow should be defined as:

qlocal ¼ hlocal½Tr, local−Tsolid, local� (82)

,where hlocal is the local heat transfer coefficient between a compressible flow and a solid wall.
In the case where qlocal ¼ 0, the local wall temperature Tsolid, local equals the recovery tempera-
ture Tr, local and is called the “adiabatic wall temperature.”

Here, Eckert's theory is extended to the recovery temperature Tr on a heating and cooling wall.
In Eq. (80), the first term expressed by the static temperature Tmain represents the internal
energy that a local boundary layer originally has, and the second term expressed by the
dynamic temperature Tdyn,mainrlocal represents the net dynamic energy that is used to increase
the temperature in a local boundary layer. When a local boundary layer is heated or cooled, the
first term is affected, but the second term remains constant. The first term should be replaced
by the appropriate form suitable for the heating or cooling of a boundary layer. Heating or
cooling affects only a thermal boundary layer; therefore, the local total temperature Ttot,bound,x

at the location x in the flow direction is defined as follows:

Ttot,bound,x ¼ Ttot, in þ ∫
x

0

qx
ρxCPδxuave,x

dx (83)

Tbound,x ¼ Ttot,bound,x−Tdyn,main,x (84)

ρx ¼
Px

RTbound,x
(85)

Figure 7. Total-, static-, and recovery-temperature profiles in the vicinity of cooling, adiabatic, and heating solid surfaces
with a boundary layer in a compressible flow.
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δx ¼
5 ν

umain,xPr

h i0:5
x0:5 for a laminar boundary layer

0:37 ν
umain,xPr

h i0:2
x0:8 for a turbulent boundary layer

8><
>: (86)

ux ¼ 0:5umain,x for a laminar boundary layer
0:8umain,x for a turbulent boundary layer ;

�
(87)

where Tbound,x and ρx are the static temperature and density, respectively, in a heated or cooled
boundary layer, and δx and ux are thermal boundary layer thickness and average velocity,
respectively. Here, evaluations of δx and ux are used for a plane, but more appropriate expres-
sion for a particular target flow field can be used. Finally, Eq. (80) is replaced by the following
equation for the local recovery temperature of a heated or cooled boundary layer.

Tr, local ¼ Tbound,x þ Tdyn,main,xrlocal ¼ Ttot,bound,x−Tdyn,main,x½1−rlocal� (88)

5. Mach-number distribution on solid walls with various shapes

As described in Section 4 4, the local Mach number Mlocal is constant on a plane but varies with
the location on a single airfoil or an airfoil in a cascade. For a single airfoil, when the inlet Mach
number Min, the Reynolds number Reairfoil with a representative length of the airfoil chord LC,
and the angle of attack α are fixed, as

Min ¼ uin
ain

(89)

Reairfoil ¼ uinLC
νin

; (90)

the distribution of the local pressure coefficient Slocal or ηlocal is uniquely obtained. In cases of a
cascade of airfoils, when the stagger angle β and the solidity σ are fixed (see Figure 8), the
distribution of the local pressure coefficient Slocal or ηlocal is obtained. Fortunately, many

Figure 8. Flow field through a cascade of airfoils, where θ is the turning angle.
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experimental results of Slocal or ηlocal have been reported for single airfoils and cascades of
airfoils. The distributions of Mlocal are calculated using Eqs. (75), (76), and (78).

Ito et al. obtained distributions of Mlocal around an airfoil in a cascade of NACA65-(12A2I8b)10
airfoils, as shown in the right frame of Figure 9, from Slocal, which is shown in the left frame of
Figure 9 [10].

6. Air-temperature distribution in boundary layers on solid walls

Nishiyama described in his book [11] that a developing boundary layer transforms from a
laminar boundary layer to a turbulent boundary layer at Rex≅104 in regions with adverse

Figure 9. Local Mach-number distributions assumed from pressure-coefficient distribution.

Figure 10. Recovery-temperature distribution assumed according to the pressure coefficient and local Mach number
distributions in Figure 9.
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pressure gradients, but a developing boundary layer transforms at Rex≅108 in regions with
favorable pressure gradients. This means that a developing boundary layer transforms across
the minimum pressure point, that is, the maximum of the pressure coefficient Slocal or ηlocal on

the airfoil surface in cases of Reairfoil≅106. According to the left graph of Figure 9, a developing
boundary layer may transform at x=LC≅0:025 on the lower concave surface and at x=LC≅0:6 on
the upper convex surface. Then, the local recovery temperature Tr, local is assumed by using
Eqs. (81) and (88) (see Figure 10). This Tr, local can be used for the evaluation of the local heat
flux qlocal using Eq. (82) if an adequate heat-transfer coefficient hlocal is employed.

7. Heat transfer through practical heat exchanger with complex shape

Ito et al. evaluated the rate of heat transfer from a hot compressible airflow to a cold supercrit-
ical-fluid flow through an airfoil heat exchanger, as shown in Figure 8 [10]. Heat is transferred
from the hot compressible airflow to the outer surface of the airfoil heat exchanger and is
conducted from the outer surface to the five inner surfaces in the airfoil heat exchanger. Then,
heat is transferred from the five inner surfaces of the airfoil heat exchanger to the cold
supercritical-fluid flow inside the five tubes.

First, Ito et al. conducted wind-tunnel experiments. They installed n thermocouples into the
airfoil heat exchanger and experimentally measured the temperature at n points inside the
exchanger. Simultaneously, the air temperature and the air Mach number at the inlet, the
supercritical-fluid temperature and pressure at the inlet, and the supercritical-fluid tempera-
ture at the outlet were experimentally measured.

Second, they assumed n heat-transfer coefficients hair,1 to hair,n for the n parts of the air-
contacted outer surface of the airfoil heat exchanger, as well as one heat-transfer coefficient
hsfc for the supercritical-fluid-contacted five inner surfaces of the airfoil heat exchanger.

Third, they performed an inverse heat-conduction analysis. The boundary conditions were set
according to the experimental results for the distribution of the recovery temperature using the
methods described in Sections 4.6, as well as the inlet supercritical-fluid temperature and
pressure. Using these boundary conditions, heat-conduction calculations for the airfoil heat
exchanger were conducted, and the temperatures at the n points in the airfoil heat exchanger
and the outlet supercritical temperature were numerically obtained.

Finally, the nþ 1 numerically obtained temperatures were compared with nþ 1 experimen-
tally obtained temperatures. If the temperatures were equal, the assumed hair,1 to hair,n and hscf
were true. Otherwise, the assumed hair,1 to hair,n and hscf were corrected, and the inverse heat-
conduction analysis was repeated.

Using these procedures, Ito et al. obtained an air Nusselt number correlation Nuair for a
cascade of NACA65-(12A2I8b)10 airfoils, as shown in Figure 8 [12].

Nuair ¼ 4:9410−3ReairfoilM1:44
in (91)
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They also obtained a supercritical-fluid Nusselt number correlation Nuscf for the tube flow
given by Eq. (33).

Moreover, the heat-transfer rate Qentire of an airfoil heat exchanger is estimated as follows:

Qentire ¼ ψκAscfΔTlm,entire; (92)

where ψ is a correction factor for the airfoil heat exchanger, and ψ is the ratio of the actual heat-
transfer rate to the heat-transfer rate of the ideal counter-flow heat exchanger without thermal
resistance.

ψ ¼ 0:1236½0:02093jξj þ 1�
φscf−exp½−0:5minf1, εSAg� þ 1 (93)

Here, ξ is an incidence of air at the inlet. The incidence is a flow-direction angle from the airfoil
camber (center) line at its leading edge, corresponding to an angle of attack of α ¼ 9:47� for the
cascade in Figure 8. φscf and φair indicate the temperature effectiveness, as follows:

φscf ¼
Tscf,out−Tscf, in

Tair, in−Tscf, in
(94)

φair ¼
Tair, in−Tair,out

Tair, in−Tscf, in
(95)

Here, φscf and φair are positive for an air-cooled system and negative for an air-heated system.
εSA is the ratio of the heat-capacity rates.

εSA ¼ mscfCP, scf

mairCP,air
(96)

Here, mscf and mair are the mass flow rates of a supercritical-fluid and air, respectively, for an
airfoil heat exchanger, and CP, scf and CP,air are the specific heats of a supercritical-fluid and air,
respectively. κ is the overall heat-transfer coefficient for an ideal counter-flow heat exchanger
without thermal resistance.

κ ¼ 1
1
hscf

þ 1
hair

Ascf
Aair

(97)

Here, Ascf and Aair are areas of supercritical-fluid-contact and air-contact surfaces, respectively,
for an airfoil heat exchanger. ΔTlm,entire is the logarithmic mean temperature difference:

ΔTlm,entire ¼ Φ½Tair, in−Tscf, in� (98)

Φ is the ratio of the logarithmic mean temperature difference to the temperature difference
between the inlet air temperature and the supercritical-fluid temperature.
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Φ ¼ 1 forεSA ¼ 1

Φ ¼ jφscfj−jφairj
ln

φair

φscf

� � forεSA≠1 (99)

The actual heat-exchange rate is estimated as Qentire½numberofairfoils�.
For example, Ito et al. performed cycle calculations for an intercooled and recuperated jet
engine employing several pairs of airfoil heat exchangers whose heat-transfer performance is
evaluated by Eqs. (91)–(99) [13].

These examples can be used for a cascade of airfoil heat exchangers; therefore, the air Nusselt
number correlation in Eq. (91) or thermal resistance in Eq. (93) might be further modified in the
near future according to the progress of research, as knowledge in this field is still developing.

8. Conclusion

The Nusselt number between supercritical fluid flows and solid walls can be estimated by
appropriate conventional correlations using the Reynolds and Prandtl numbers if suffi-
ciently accurate physical properties are used for each local point through the region of
supercritical fluid flows. Thus, a numerical integration of local heat flow rate is required
when you calculate the entire heat flow rate in a heat exchanger between supercritical fluid
flows and solid walls.

The recovery temperature should be considered for the estimation of heat transfer between
compressible flows and solid walls. For compressible flows on adiabatic airfoil surfaces, the
local recovery temperature varies by each point on the airfoil surface, owing to the acceler-
ating and decelerating effects of the main flow outside of the boundary layer on the airfoil
surface. In addition, for compressible flows on cooling and heating airfoil surfaces, the local
total temperature on airfoil surfaces in the boundary layer also varies at each point because
of cooling and heating effects. The accelerating and decelerating effects can be estimated
from the local Mach number distribution on the airfoil shape. The cooling and heating effects
can also be estimated when a numerical integration of elapsed variation of the local total
temperature along the boundary layer from the leading edge if the detailed solid tempera-
ture distribution on the airfoil surface is known. To obtain the detailed solid temperature
distribution on the airfoil surface, detailed experimental measurements or an accurate CFD
analysis may be required.

To estimate conjugate heat transfer through a practical heat exchanger with a complex shape,
one solution is a combination of experimental results in wind tunnel tests and an inverse
heat conduction method. The other solution is CFD analysis validated by experimental
results in wind tunnel tests. Empirical correlations are very limited for conjugate heat trans-
fer through a practical heat exchanger with complex shape because knowledge in this field is
still developing.
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