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1. Introduction

In this chapter, the same control problem as in the previous chapter is considered, which is
the rejection of harmonic disturbances with time-varying frequencies for linear time-invariant
(LTI) plants. In the previous chapter, gain-scheduled observer-based state-feedback
controllers for this control problem were presented. In the present chapter, two methods
for the design of general gain-scheduled output-feedback controllers are presented. As in
the previous chapter, the control design is based on a description of the system in linear
parameter-varying (LPV) form. One of the design methods presented is based on the
polytopic linear parameter-varying (pLPV) system description (which has also been used in
the previous chapter) and the other method is based on the description of an LPV system in
linear fractional transformation (LPV-LFT) form. The basic idea is to use the well-established
norm-optimal control framework based on the generalized plant setup shown in Fig. 1 with
the generalized plant G and controller K.

In this setup, u is the control signal and y consists of all signals that will be provided to the
controller. The signal w is the performance input and the signal q is the performance output
in the sense that the performance requirements are expressed in terms of the “overall gain”
(usually measured by the H∞ or the H2 norm) of the transfer function from w to q in closed

G

K

u y

w q

Figure 1. Generalized plant and controller
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loop. In this setup, the aim of the controller design is to satisfy performance requirements
expressed as upper bounds on the norm (in case of suboptimal control) or minimize the norm
(in optimal control) of the transfer function from w to q. Loosely speaking, a good controller
should make the effect of w on q “small” (for suboptimal control) or “as small as possible”
(for optimal control). The performance outputs usually consist of weighted versions of the
controlled signal, the control error and the control effort. This is achieved by augmenting the
original plant with output weighting functions. Good rejection of specific disturbances can
be achieved in this framework by using a disturbance model as a weighting function in the
transfer path from the performance input w to the performance output q, that is, by modeling
the disturbance to be rejected as a weighted version of the performance input. This forces
the maximum singular value σmax(Gqw(jω)) or, in the single-input single-output case, the
amplitude response |Gqw(jω)| of the open-loop transfer function to have a very high gain in
the frequency regions specified by the disturbance model, or, loosely speaking, enlarges the
effect of w on q in certain frequency regions. A reduction of the overall effect of w on q in
closed loop will then be mostly achieved by reducing the effect in regions where it is large
in open loop. From classical control arguments, it is intuitive that this requires a high loop
gain in these frequency regions which in turn usually requires a high controller gain. A high
loop gain will give a small sensitivity and in turn a good disturbance rejection (in specified
frequency regions).

This control design setup is used in this chapter for the rejection of harmonic disturbances
with time-varying frequencies. The control design problem is based on a generalized
plant obtained through the introduction of a disturbance model that describes the harmonic
disturbances and the addition of output weighting functions. Descriptions of the disturbance
model in pLPV and in LPV-LFT form are used and lead to generalized plant descriptions that
are also in pLPV or LPV-LFT form. Corresponding design methods are then employed to
obtain controllers. For a plant in pLPV form, standard H∞ design [11] is used to compute
a set of controllers. The gain scheduling is then achieved by interpolation between these
controllers. For a plant in LPV-LFT form, the design method of Apkarian & Gahinet [1] is
used that directly yields a gain-scheduled controller also in LPV-LFT form.

LPV approaches for the rejection of harmonic disturbances have been used by Darengosse &
Chevrel [7], Du & Shi [8], Du et al. [9], Bohn et al. [5, 6], Kinney & de Callafon [14, 15, 16],
Köroğlu & Scherer [17], Witte et al. [19], Balini et al. [4], Heins et al. [12, 13], Ballesteros &
Bohn [2, 3] and Shu et al. [18]. Darengosse & Chevrel [7], Du & Shi [8], Du et al. [9], Witte
et al. [19], Balini et al. [4] suggested continuous-time LPV approaches. These approaches are
tested for a single sinusoidal disturbance by Darengosse & Chevrel [7], Du et al. [9], Witte et
al. [19] and Balini et al. [4]. Methods based on observer-based state-feedback controllers are
presented by Bohn et al. [5, 6], Kinney & de Callafon [14, 15, 16] and Heins et al. [12, 13]. In the
approach of Bohn et al. [5, 6], the observer gain is selected from a set of pre-computed gains
by switching. In the other approaches of Kinney & de Callafon [16], Heins et al. [13] and in
the previous chapter, the observer gain is calculated by interpolation. In the other approach
presented in the previous chapter, which is also used by Kinney & de Callafon [14, 15] and
Heins et al. [12], the state-feedback gain is scheduled using interpolation. A general output
feedback LPV approach for the rejection of harmonic disturbances is suggested and applied
in real time by Ballesteros & Bohn [2, 3] and Shu et al. [18].

The existing LPV approaches can be classified by the control design technique used to obtain
the controller. Approaches based on pLPV control design are used by Heins et al. [12, 13],
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Kinney & de Callafon [14], Du & Shi [8] and Du et al. [9]. An approach based on LPV-LFT
control design is used by Ballesteros & Bohn [2, 3] and Shu et al. [18].

For a practical application, the resulting controller has to be implemented in discrete time. In
applications of ANC/AVC, the plant model is often obtained through system identification.
This usually gives a discrete-time plant model. If a continuous-time controller is computed,
the controller has to be discretized. Since the controller is time varying, this discretization
would have to be carried out at each sampling instant. An exact discretization involves the
calculation of a matrix exponential, which is computationally too expensive and leads to a
distortion of the frequency scale. Usually, this can be tolerated, but not for the suppression
of harmonic disturbances. In this context, it is not surprising that the continuous-time design
methods of Darengosse & Chevrel [7], Du et al. [9], Kinney & de Callafon [14] and Köroğlu
& Scherer [17] are tested only in simulation studies with a very simple system as a plant and
a single frequency in the disturbance signal. Exceptions are Witte et al. [19] and Balini et
al. [4], who designed continuous-time controllers which then are approximately discretized.
However, Witte et al. [19] use a very high sampling frequency of 40 kHz to reject a harmonic
disturbance with a frequency up to 48 Hz (in fact, the authors state that they chose “the
smallest [sampling time] available by the hardware”) and Balini et al. [4] use a maximal
sampling frequency of 50 kHz. The control design methods presented in this chapter are
realized in discrete time.

The remainder of this chapter is organized as follows. In Sec. 2, pLPV systems and LPV-LFT
systems are introduced and the control design for such systems is described. In Sec. 3, it is
described how the control problem considered here can be transformed to a generalized plant
setup. The required pLPV disturbance model for the harmonic disturbance is introduced in
Sec. 3.1 and in Sec. 3.2, it is described how the generalized plant in pLPV form is obtained
by combining the disturbance model, the plant and the weighting functions. In Sec. 4, the
transformation of the control problem to a generalized plant in LPV-LFT form is treated
in essentially the same way, by formulating an LPV-LFT disturbance model (Sec. 4.1) and
building a generalized plant in LPV-LFT form (Sec. 4.2). The controller synthesis for both
descriptions is described in Sec. 5. Experimental results are presented in Sec. 6 and the chapter
finishes with a discussion and some conclusions in Sec. 7.

2. Control design setup

In this section, pLPV systems and LPV-LFT systems are introduced and the control design for
such systems is described in Sec. 2.1 and 2.2, respectively.

2.1. Control design for pLPV systems

A pLPV system is of the form [
xk+1
yk

]
=

[
A(θ) B

C D

] [
xk
uk

]
, (1)

where the system matrix depends affinely on a parameter vector θ, that is

A(θ) = A 0 + θ1A 1 + θ2A 2 + · · ·+ θN AN , (2)
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u y
Gw

w q
q

Figure 2. General LPV-LFT system

with constant matrices A i. The parameter vector θ varies in a polytope Θ with M vertices
vj ∈ RN . A point θ ∈ Θ can be written as a convex combination of vertices, i.e. there exists a
coordinate vector λ= [ λ 1 · · · λ M ]T ∈ RM such that θ can be written as

θ =
M

∑
j=1

λj vj (3)

with

λj ≥ 0,
M

∑
j=1

λj = 1. (4)

Defining Av, j = A(vj) for j = 1, ..., M, the system matrix A(θ) can be represented as

A(θ) = A(λ) = λ1Av, 1 + λ2Av, 2 + ... + λMAv, M. (5)

The system matrix of a pLPV system A(θ) can be calculated from the M vertices of the
polytope Θ by finding the coordinate vector λ that fulfills the conditions of (3) and (4).

Once a representation of a system is obtained in pLPV form, it is possible to find a
controller using H∞ or H2 techniques for each vertex of the polytope. The controller
for a given θ ∈ Θ can be calculated through controllers for the vertex systems. The
closed-loop stability is guaranteed even for arbitrarily fast changes of the scheduling
parameters if a parameter-independent Lyapunov function is used (for the whole polytope)
in the control design. This approach, however, is conservative because fast variations of
the scheduling parameters are considered, which might not occur in a practical application.
Parameter-dependent Lyapunov functions can be used to include bounds on the rate of
change of the parameters, but are not considered here.

2.2. Control design for LPV-LFT systems

An LPV system in LFT form is shown in Fig. 2. It consists of a generalized plant G that
includes input and output weighting functions and a parametric uncertainty block θ that has
been “pulled out” of the system. For this general system, a gain-scheduling controller can
be calculated following the method presented in Apkarian & Gahinet [1]. In this method,
two sets of linear matrix inequalities (LMIs) are solved. The first set of LMIs determines the
feasibility of the problem which means that a bound on the control system performance in the
sense of the H∞ norm can be satisfied. With the second set of LMIs, the controller matrices are
calculated from the solution of the first set of LMIs.

As a result of applying this control design method, the gain-scheduling control structure of
Fig. 3 is obtained. The time-varying plant parameters are directly used as the gain-scheduling
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q w

u y
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w q

q

Figure 3. LPV-LFT gain-scheduling control structure

parameters of the controller. This control design method guarantees stability through the
small gain theorem. It is often conservative, since the parameter ranges covered are usually
larger than the ones that may occur in the real system.

3. Generalized plant in pLPV form

As stated in the previous section, to calculate the controller using the pLPV control design
method, the generalized plant in pLPV form is needed. In this section, the steps to obtain the
generalized plant in pLPV form are discussed. The disturbance model and a representation
of the disturbance model in pLPV form are obtained in Sec. 3.1. In Sec. 3.2, the generalized
plant is built by combining the plant, the disturbance model in pLPV form and the weighting
functions.

3.1. Disturbance model

A general model for a harmonic disturbance with nd fixed frequencies is described by[
Ad Bd
Cd 0

]
(6)

with

Ad =

⎡
⎢⎣
Ad, 1 · · · 0

...
. . .

...
0 · · · Ad, nd

⎤
⎥⎦ , Ad, i =

[
0 1
−1 ai

]
, (7)

ai = 2cos(2π fiT), (8)

Bd =

⎡
⎢⎣
Bd, 1

...
Bd, nd

⎤
⎥⎦ , Bd, i =

[
1
1

]
, (9)

Cd =
[
Cd, 1 · · · Cd, nd

]
and Cd, i =

[
1 0

]
. (10)

A harmonic disturbance can be modeled as the output of an unforced system with system
matrix Ad and output matrix Cd given above in (7) and (10). An input matrix is not
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required. However, in the generalized plant setup, a performance input is required and the
disturbance model acts as an input weighting function on the performance input. This is why
the disturbance model above has been given with a nonzero input matrix Bd in (9).

The frequency in (8) is fixed and denoted by fi. As in Sec. 4 of the previous chapter, the pLPV
disturbance model for nd time-varying frequencies f j, k ∈ [ fmin, j, fmax, j], j = 1, 2, . . . , nd, is
defined as [

A
(pLPV)

d (θ) B
(pLPV)

d

C
(pLPV)

d 0

]
(11)

with
A

(pLPV)

d (θ) = Ad, 0 + θ1A d, 1 + · · ·+ θnd Ad, nd
. (12)

As in Sec. 2.1, (12) can be written in the form of

A
(pLPV)

d (θ) = A
(pLPV)

d (λ) = λ1Av, 1 + · · ·+ λMAv, M =
M

∑
i=1

λiAv, i, (13)

where the matrices Av, i are defined in the same way as A
(pLPV)

d in (7) and (8), but with ai
evaluated for all the vertices of the polytope, with j = 1, 2, . . . , nd. The coordinate vector λ
can be calculated using the method described in Sec. 4.4 of the previous chapter.

3.2. Generalized plant

A state-space representation of the plant is given by

Gp =

[
Ap Bp
Cp Dp

]
(14)

and it is assumed that the disturbance is acting on the input of the plant.

The block diagram of the generalized plant with the disturbance, the plant and the weighting
functions

W
(pLPV)

y =

⎡
⎣A

(pLPV)

Wy
B

(pLPV)

Wy

C
(pLPV)

Wy
D

(pLPV)

Wy

⎤
⎦ , (15)

W
(pLPV)

u =

[
A

(pLPV)

Wu
B

(pLPV)

Wu

C
(pLPV)

Wu
D

(pLPV)

Wu

]
(16)

is illustrated in Fig. 4.

For every vertex of the polytopic system, the generalized plant can be described by

⎡
⎣xk+1

qk
yk

⎤
⎦ =

⎡
⎢⎢⎣
Ai(θ) B

(pLPV)

w B
(pLPV)

u

C
(pLPV)

q D
(pLPV)

qw D
(pLPV)

qu

C
(pLPV)

y D
(pLPV)

yw D
(pLPV)

yu

⎤
⎥⎥⎦
⎡
⎣xk

wk
uk

⎤
⎦ (17)

where
xk =

[
xT

p, k xT
d, k xT

Wy , k xT
Wu , k

]T
, (18)
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Ai(θ) =

⎡
⎢⎢⎢⎣

Ap BpC
(pLPV)

d 0 0
0 Av, i 0 0

B
(pLPV)

Wy
Cp 0 A

(pLPV)

Wy
0

0 0 0 A
(pLPV)

Wu

⎤
⎥⎥⎥⎦ , (19)

[
B

(pLPV)

w B
(pLPV)

u

]
=

⎡
⎢⎢⎢⎣

0 Bp

B
(pLPV)

d 0
0 0

0 B
(pLPV)

Wu

⎤
⎥⎥⎥⎦ , (20)

[
C

(pLPV)

q

C
(pLPV)

y

]
=

⎡
⎢⎣

D
(pLPV)

Wy
Cp 0 C

(pLPV)

Wy
0

0 0 0 C
(pLPV)

Wu

Cp 0 0 0

⎤
⎥⎦ (21)

and [
D

(pLPV)

qw D
(pLPV)

qu

D
(pLPV)

yw D
(pLPV)

yu

]
=

⎡
⎢⎣

0 0
0 D

(pLPV)

Wu

0 0

⎤
⎥⎦ . (22)

Once the generalized plant is obtained, the controller can be calculated using the algorithms
in the following section.

+pu
dy

pyp p

p 0
A B
C

q

dw

(pLPV) (pLPV)

(pLPV) (pLPV)

y y

y y

W W

W WD

A B

C

(pLPV) (pLPV)

(pLPV) (pLPV)

u u

u u

W W

W WD

A B

C

(pLPV)

(pLPV)

d

d

v,
1

M

i i
i

A B

C 0

Figure 4. Plant with pLPV disturbance model and weighting functions

4. Generalized plant in LPV-LFT form

The same steps as in the previous section are carried out, but in this section the generalized
plant in LPV-LFT form is obtained such that the control design method of Apkarian & Gahinet
[1] can be used. The model of the harmonic disturbance and the generalized plant in LFT form
are obtained in Sec. 4.1 and 4.2, respectively. The generalized plant is the result of combining
plant, harmonic disturbance and weighting functions.
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4.1. Disturbance model

The state-space representation of a harmonic disturbance for nd fixed frequencies was given
by (6-10). If the frequencies of a harmonic disturbance change between minimal values fi, min
and maximal values fi, max, a representation for the variations of the frequencies is given by

ai( fi) = 2 cos(2π fiT) = ai + piθi, k( fi) (23)

with
ai = cos(2π fi, maxT) + cos(2π fi, minT), (24)

pi = cos(2π fi, maxT)− cos(2π fi, minT) (25)

and
θi, k ∈ [−1, 1]. (26)

An LPV-LFT model of the disturbance can be written as

xd, k+1 = Adxd, k +Bd, θwθ, k +Bd, wwd, k, (27)

qθ, k = Cd, θxd, k, (28)

yd, k = Cd, yxd, k, (29)

wθ, k = θkqθ, k (30)

with

Ad =

⎡
⎢⎢⎢⎣
Ad, 1 · · · 0

...
. . .

...

0 · · · Ad, nd

⎤
⎥⎥⎥⎦ , Ad, i =

[
0 1
−1 ai

]
, (31)

Bd, θ =

⎡
⎢⎢⎢⎣
Bd, θ, 1 · · · 0

...
. . .

...

0 · · · Bd, θ, nd

⎤
⎥⎥⎥⎦ , Bd, θ, i =

[
0
pi

]
, (32)

Bd, w =

⎡
⎢⎢⎢⎣
Bd, w, 1

...

Bd, w, nd

⎤
⎥⎥⎥⎦ , Bd, w, i =

[
1
1

]
, (33)

Cd, θ =

⎡
⎢⎢⎢⎣
Cd, θ, 1 · · · 0

...
. . .

...

0 · · · Cd, θ, nd

⎤
⎥⎥⎥⎦ , Cd, θ, i =

[
0 1

]
, (34)

Cd, y =
[
Cd, y, 1 · · · Cd, y, nd

]
, Cd, y, i =

[
1 0

]
(35)

and

θk =

⎡
⎢⎢⎢⎣

θ1, k · · · 0

...
. . .

...

0 · · · θnd, k

⎤
⎥⎥⎥⎦ . (36)
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4.2. Generalized plant

The generalized plant is the result of combining the plant, the harmonic disturbance and the
weighting functions and it is shown in Fig. 5. The weighting functions are defined the same
way as in (15) and (16). A representation of the generalized plant in LFT form is given by

⎡
⎢⎢⎣
xk+1
qθ, k
qk
yk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A Bθ B
(LFT)

w B
(LFT)

u
Cθ Dθθ Dθw Dθu

C
(LFT)

q Dqθ D
(LFT)

qw D
(LFT)

qu

C
(LFT)

y Dyθ D
(LFT)

yw D
(LFT)

yu

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

xk
wθ, k
wk
uk

⎤
⎥⎥⎦ (37)

with
xk =

[
xT

p, k xT
d, k xT

Wy , k xT
Wu , k

]T
, (38)

A =

⎡
⎢⎢⎢⎣

Ap BpCd, y 0 0

0 Ad 0 0

B
(LFT)

Wy
Cp 0 A

(LFT)

Wy
0

0 0 0 A
(LFT)

Wu

⎤
⎥⎥⎥⎦ , (39)

[
Bθ B

(LFT)

w B
(LFT)

u

]
=

⎡
⎢⎢⎣

0 0 Bp
Bd, θ Bd, w 0
0 0 0

0 0 B
(LFT)

Wu

⎤
⎥⎥⎦ , (40)

⎡
⎢⎣

Cθ

C
(LFT)

q

C
(LFT)

y

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

0 Cd, θ 0 0

D
(LFT)

Wy
Cp 0 C

(LFT)

Wy
0

0 0 0 C
(LFT)

Wu

Cp 0 0 0

⎤
⎥⎥⎥⎦ (41)

+ py
dy

puu

y

w dw

w q

q

dG

pG yW

uW

Figure 5. Plant with LPV-LFT disturbance model and weighting functions
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and ⎡
⎢⎣
Dθθ Dθw Dθu
Dqθ D

(LFT)

qw D
(LFT)

qu

Dyθ D
(LFT)

yw D
(LFT)

yu

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
0 0 0

0 0 0
0 0 D

(LFT)

Wu

0 0 0

⎤
⎥⎥⎥⎦ . (42)

5. Controller synthesis and implementation for LPV systems

In this section, algorithms for the calculation of the pLPV and LPV-LFT gain-scheduling
controllers are explained in detail. Suboptimal controllers using H∞ techniques are obtained.

5.1. Controller synthesis and implementation for pLPV systems

With the generalized plant in pLPV form, an H∞-suboptimal controller for each vertex of the
polytope can be calculated using standard H∞ techniques [11]. The steps to obtain them are
explained here in detail.

First, two outer factors
NX = null

[
C

(pLPV)

y D
(pLPV)

yw 0
]

(43)

and
NY = null

[
(B

(pLPV)

u )T (D
(pLPV)

qu )T 0
]

(44)

are defined, where null[·] denotes the basis of the null space of a matrix.

Then, the LMIs

NT
X

⎡
⎢⎣
AT

i X1Ai −X1 AT
i X1B

(pLPV)

w (C
(pLPV)

q )T

(B
(pLPV)

w )TX1Ai −γ + (B
(pLPV)

w )TX1B
(pLPV)

w (D
(pLPV)

qu )T

C
(pLPV)

q D
(pLPV)

qu −γI

⎤
⎥⎦NX < 0, (45)

NT
Y

⎡
⎢⎣
AiY1A

T
i −Y1 AiY1(C

(pLPV)

q )T B
(pLPV)

w

C
(pLPV)

q Y1A
T
i −γI +C

(pLPV)

q Y1(C
(pLPV)

q )T D
(pLPV)

qu

(B
(pLPV)

w )T (D
(pLPV)

qu )T −γ

⎤
⎥⎦NY < 0, (46)

[
X1 I

I Y1

]
≥ 0 (47)

for feasibility and optimality are solved for X1 and Y1 for every Ai = Ai(θ).

With X1 and Y1, the matrices
X1 −Y −1

1 = XT
2 X2, (48)

X
(pLPV)

=

[
X1 X2
XT

2 I

]
(49)

are calculated.

With

Ai =

[
Ai 0
0 0

]
, (50)
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B =

[
B

(pLPV)

w
0

]
, (51)

C =
[
C

(pLPV)

q 0
]

, (52)

the matrix

ψi =

⎡
⎢⎢⎢⎢⎣
−(X

(pLPV)
)−1 Ai B 0

A
T
i −X

(pLPV)
0 C

T

B
T

0 −γ (D
(pLPV)

qw )T

0 C D
(pLPV)

qw −γI

⎤
⎥⎥⎥⎥⎦ . (53)

is calculated. The matrices
P

(pLPV)
=

[
BT 0 0 DT

qu

]
(54)

and
Q

(pLPV)
=

[
0 C Dyw 0

]
(55)

are composed with

B =

[
0 B

(pLPV)

u
I 0

]
, (56)

C =

[
0 I

C
(pLPV)

y 0

]
, (57)

Dqu =
[
0 D

(pLPV)

qu

]
, (58)

Dyw =

[
0

D
(pLPV)

yw

]
. (59)

Finally, the basic LMIs

ψi + (P
(pLPV)

)TΩiQ
(pLPV)

+ (Q
(pLPV)

)TΩiP
(pLPV)

< 0 (60)

are solved for Ωi for every i.

The state-spaces matrices of the controllers for each vertex can be extracted from

Ωi =

[
AKi BKi

CKi DKi

]
. (61)

The implemented controller is interpolated using the coordinate vector λ in

Ω
(pLPV)

= Σm
i=1λiΩi. (62)

5.2. Controller synthesis and implementation for LPV-LFT systems

In this section, the algorithm for the calculation of the H∞-suboptimal gain-scheduling
controller from [1] is explained in detail.

From the state-space representation of the generalized plant the outer factors for the LMIs that
have to be solved in the design can be calculated as

NR = null
[
(B

(LFT)

u )T D
(LFT)

θu (D
(LFT)

qu )T 0
]

(63)
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and
NS = null

[
C

(LFT)

y Dyθ D
(LFT)

yw 0
]

. (64)

With the outer factors, a first set of LMIs corresponding to the feasibility and optimality
condition is given as

NT
R

⎡
⎢⎢⎢⎢⎢⎢⎣

ARAT −R ARCT
θ AR(C

(LFT)
)T

q Bθ Bw

CθRAT −γJ3 +CθRCT
θ CθR(C

(LFT)
)T

q Dθθ Dθw

C
(LFT)

q RAT C
(LFT)

q RCT
θ C

(LFT)

q R(C
(LFT)

)T
q − γI Dqθ D

(LFT)

qw
BT

θ DT
θθ DT

qθ −γL3 0

(B
(LFT)

w )T DT
θw (D

(LFT)

qw )T 0 −γ

⎤
⎥⎥⎥⎥⎥⎥⎦
NR < 0, (65)

NT
S

⎡
⎢⎢⎢⎢⎢⎢⎣

ATSA−S ATSBθ ATSB
(LFT)

w CT
θ (C

(LFT)

q )T

BT
θ SA −γL3 +BT

θ SBθ BT
θ SB

(LFT)

w DT
θθ DT

qθ

(B
(LFT)

w )TSA (B
(LFT)

w )TSBθ (B
(LFT)

w )TS(B
(LFT)

w )− γ DT
θw (D

(LFT)

qw )T

Cθ Dθθ Dθw −γJ3 0

C
(LFT)

q Dqθ D
(LFT)

qw 0 −γI

⎤
⎥⎥⎥⎥⎥⎥⎦
NS < 0, (66)

[
R I
I S

]
≥ 0, (67)

[
L3 I
I J3

]
≥ 0. (68)

The scalar γ is an upper bound of the maximum singular value, which is given as a constraint.
This set of LMIs is solved for R, S, J3 and L3.

The matrices L1 and L2 are calculated through

L3 − J−1
3 = LT

2L
−1
1 L2, (69)

and the matrix X
(LFT)

is computed as

X
(LFT)

=

[
S I

NT 0

] [
I R

0 MT

]
, (70)

with M and N satisfying
MNT = I −RS. (71)

Then, the basic LMI

ψ + (Q
(LFT)

)T(Ω
(LFT)

)TP
(LFT)

+ (P
(LFT)

)TΩ
(LFT)

Q
(LFT)

< 0, (72)

where

ψ =

⎡
⎢⎢⎣
−X−1 A0 B0 0

AT
0 −X 0 CT

0
BT

0 0 −γL0 DT
0

0 C0 D0 −γJ0

⎤
⎥⎥⎦ , (73)

P
(LFT)

=
[
B̃T 0 0 D̃T

12
]

, (74)
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Q
(LFT)

=
[
0 C̃ D̃21 0

]
, (75)

A0 =

[
A 0

0 0

]
, B0 =

[
0 Bθ B

(LFT)

w

0 0 0

]
, B̃ =

[
0 B

(LFT)

u 0

I 0 0

]
, (76)

C0 =

⎡
⎢⎢⎣

0 0

Cθ 0

C
(LFT)

q 0

⎤
⎥⎥⎦ , C̃ =

⎡
⎢⎢⎣

0 I

C
(LFT)

y 0

0 0

⎤
⎥⎥⎦ , D0 =

⎡
⎢⎢⎣

0 0 0

0 Dθθ Dθw

0 Dqθ D
(LFT)

qw

⎤
⎥⎥⎦ , (77)

D̃12 =

⎡
⎢⎢⎣

0 0 I

0 Dθu 0

0 D
(LFT)

qu 0

⎤
⎥⎥⎦ , D̃21 =

⎡
⎢⎢⎣

0 0 0

0 Dyθ D
(LFT)

yw

I 0 0

⎤
⎥⎥⎦ , (78)

and

L =

[
L1 L2

LT
2 L3

]
, L0 =

[
L 0

0 1

]
, J = L−1, J0 =

[
J 0

0 I

]
, (79)

is solved for the controller matrix Ω
(LFT)

. In the last step, the state-space matrices of the
controller are extracted from

Ω
(LFT)

=

⎡
⎣A(LFT)

K B
(LFT)

K

C
(LFT)

K D
(LFT)

K

⎤
⎦ . (80)

6. Experimental results

The gain-scheduled output-feedback controllers obtained through the design procedures
presented in this chapter are validated with experimental results. Both controllers have been
tested on the ANC and AVC systems. Results are presented for the pLPV gain-scheduled
controller on the ANC system in Sec. 6.1 and for the LPV-LFT controller on the AVC test bed
in Sec. 6.2. Identical hardware setup and sampling frequency as in the previous chapter are
used.

6.1. Experimental results for the pLPV gain-scheduled controller

The pLPV gain-scheduled controller is validated with experimental results on the ANC
headset. The controller is designed to reject a disturbance signal which contains four
harmonically related sine signals with fundamental frequency between 80 and 90 Hz. The
controller obtained is of 21st order.

Amplitude frequency responses and pressure measured when the fundamental frequency
rises suddenly from 80 to 90 Hz are shown in Figs. 6 and 7. An excellent disturbance rejection
is achieved even for unrealistically fast variations of the disturbance frequencies. In Fig. 8,
results for time-varying frequencies are shown. The performance for fast variations of the
fundamental frequency is further studied in Fig. 9. As in the previous chapter, with fast
changes of the fundamental frequency the disturbance attenuation performance decreases but
the system remains stable.
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Figure 6. Open-loop (gray) and closed-loop (black) amplitude frequency responses for fixed disturbance
frequencies of 80, 160, 240 and 320 Hz (left) and of 90, 180, 270 and 360 Hz (right)
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Figure 7. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left) and
measured sound pressure (right). The control sequence is off/on/off
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Figure 8. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left) and
measured sound pressure (right) in open loop (gray) and closed loop (black)
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Figure 9. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left) and
measured sound pressure (right) in open loop (gray) and closed loop (black)

6.2. Experimental results for the LFT gain-scheduled controller

The AVC test bed is used to test the LFT gain-scheduled controller experimentally. The
controller is designed to reject a disturbance with eight harmonic components which are
selected to be uniformly distributed from 80 to 380 Hz in intervals of 20 Hz. The resulting
controller is of 27th order.

Amplitude frequency responses are shown in Fig. 10 and results for an experiment where
the frequencies change drastically as a step function in Fig. 11. Results from experiments
with time-varying frequencies are shown in Figs. 12 and 13. Excellent disturbance rejection is
achieved.
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Figure 10. Open-loop (gray) and closed-loop (black) amplitude frequency responses for fixed
disturbance frequencies of 80, 120, 160, 200, 240, 280, 320 and 360 Hz (left) and 100, 140, 180, 220, 260,
300, 340 and 380 Hz (right)
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Figure 11. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured acceleration (right). The control sequence is off/on/off
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Figure 12. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured acceleration (right) in open loop (gray) and closed loop (black)
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Figure 13. Results for a disturbance with time-varying frequencies. Variation of the frequencies (left)
and measured acceleration (right) in open loop (gray) and closed loop (black)
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7. Discussion and conclusion

Two discrete-time control design methods have been presented in this chapter for the rejection
of time-varying frequencies. The output-feedback controllers are obtained through pLPV and
LPV-LFT gain-scheduling techniques. The controllers obtained are validated experimentally
on an ANC and AVC system. The experimental results show an excellent disturbance rejection
even for the case of eight frequency components of the disturbance.

The control design guarantees stability even for arbitrarily fast changes of the disturbance
frequencies. This is an advantage over heuristic interpolation methods or adaptive filtering,
for which none or only “approximate stability results” are available [10].

To the best of the authors’ knowledge, industrial applications of LPV controllers are rather
limited. The results of this chapter show that the implementation of even high-order LPV
controllers can be quite straightforward.

Nomenclature

Acronyms

ANC Active noise control.

AVC Active vibration control.

LFT Linear fractional transformation.

LMI Linear matrix inequality.

LPV Linear parameter varying.

LTI Linear time invariant.

pLPV Polytopic linear parameter varying.

Variables

(in order of appearance)

G Generalized plant.

K Controller.

u,y Control input, output signal.

w,q Performance input, performance output.

σmax Maximum singular value.

Gqw Transfer path between performance input and performance output.

A(θ),B,C,D State-space matrices of a pLPV system.

xk,yk,uk State vector, output and input.
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A i Constant matrices of the polytopic representation of A(θ).

θ Parameter vector.

θi The i-th element of the parameter vector.

Θ Parameter polytope.

vj Vertices of the polytope.

M Number of vertices of the polytope.

N Number of parameters.

λ Coordinate vector.

λj The j-th element of the coordinate vector.

Av, j,A(vj) System matrix for the j-th vertex.

θ Parametric uncertainty block.

wθ ,qθ Output and input of the parameter block for the plant in LFT form.

w̃θ , q̃θ Output and input of the parameter block for the controller in LFT form.

nd Number of frequencies of the disturbance.

A
(2nd×2nd)
d , State-space matrices of the disturbance model for fixed frequencies.

B
(2nd×1)
d ,

C
(1×2nd)
d

Ad, i,Bd, i,Cd, i Block matrices of Ad, Bd and Cd.

ai Scalar parameter for the disturbance model.

T, fi Sampling time and the i-th frequency.

Ad(θ)
(2nd×2nd), State-space matrices of the pLPV disturbance model.

B
(2nd×1)
d ,

C
(1×2nd)
d

Ad, i Constant matrices of the polytopic representation of Ad(θ).

np Order of the plant.

Gp System representation of the plant.

A
(np×np)
p , State-space matrices of the plant.

B
(np×1)
p ,

C
(1×np)
p , D(1×1)

p

nWy Order of the weighting function for y.
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Wy, Wu System representations of the weighting functions.

A
(nWy×nWy )

Wy
,B

(nWy×1)
Wy

, State-space matrices of the weighting function for y.

C
(1×nWy )

Wy
, D(1×1)

Wy

nWu Order of the weighting function for u.

A
(nWu×nWu )
Wu

,B(nWu×1)
Wu

, State-space matrices of the weighting function for u.

C
(1×nWu )
Wu

, D(1×1)
Wu

xp, k,xd, k, State vectors of plant, disturbance and

xWy , k,xWu , k weighting functions.

Ai(θ),B
(pLPV)

w ,B
(pLPV)

u , State-space matrices of the pLPV generalized plant.

C
(pLPV)

q ,D
(pLPV)

qw ,D
(pLPV)

qu

C
(pLPV)

y , D
(pLPV)

yw , D
(pLPV)

qw

0 Zero matrix.

Ad,Bd, θ ,Bd, w,Cd, θ ,Cd, y State-space matrices of the LFT disturbance model.

wd, yd Input and output of the disturbance model.

up, yp Input and output of the plant.

ai, pi Scalar parameters for the disturbance model.

A,Bθ ,B
(LFT)

w ,B
(LFT)

u , State-space matrices of the LFT generalized plant.

Cθ ,Dθθ ,Dθw,Dθu,

C
(LFT)

q ,Dqθ ,D
(LFT)

qw ,D
(LFT)

qu ,

C
(LFT)

y ,Dyθ ,D
(LFT)

yw ,D
(LFT)

yu

N
((n+3)×(n+2))
X ,N ((n+3)×(n+2))

Y Outer factors to build the LMIs.

X
(n×n)
1 , Solutions of the first set of LMIs.

Y
(n×n)

1

I Identitiy matrix.

n = np + 2nd + nWy + nWu Order of matrices X1 and Y1.

ψ
(4n+3)×(4n+3)
i Matrix to build the basic LMI.

X(2n×2n),A(2n×2n)
i , Matrices to build matrix ψi.

B
(2n×1),C(2×2n)

P ((n+1)×(4n+3)),Q((n+1)×(4n+3)) Matrices to build the basic LMI.
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B(2n×(n+1)),C((n+1)×2n), Matrices to obtain P
(pLPV)

and Q
(pLPV)

.

D
(2×(n+1))
qu ,D((n+1)×1)

yw

Ω
((n+1)×(n+1))
i Solution of the basic LMI for the i-th vertex.

A
(n×n)
Ki

,B(n×1)
Ki

, State-space matrices of the controller for the

C
(1×n)
Ki

, D(1×1)
Ki

i-th vertex.

N
((n+2nd+3)×(n+2nd+2))
R , Outer factors to build the LMIs.

N
((n+2nd+3)×(n+2nd+2))
S

R(n×n),S(n×n), Solutions of the first set of LMIs.

J
(nd×nd)
3 ,L(nd×nd)

3

γ Upper bound of the maximum singular value.

M (n×n),N (n×n) Matrices calculated from R and S.

L
(nd×nd)
1 ,L(nd×nd)

2 Matrices to build L.

ψ((4n+4nd+3)×(4n+4nd+3)) Matrix to build the basic LMI.

X(2n×2n),A(2n×2n)
0 , Matrices needed to build ψ.

B
(2n×(2nd+1))
0 ,C((2nd+2)×2n)

0

D
((2nd+2)×(2nd+1))
0 ,J ((2nd+2)×(2nd+2))

0 ,

L
((2nd+1)×(2nd+1))
0 ,J (2nd×2nd),

L(2nd×2nd)

P ((n+nd+1)×(4n+4nd+3)), Matrices to build the basic LMI.

Q((n+nd+1)×(4n+4nd+3))

B̃(2n×(n+nd+1)), C̃((n+nd+1)×2n), Matrices to obtain P
(LFT)

and Q
(LFT)

.

D̃
((2nd+2)×(n+nd+1))
12 ,

D̃
((n+nd+1)×(2nd+1))
21

Ω((n+nd+1)×(n+nd+1)) Controller matrix.

A
(n×n)
K ,B(n×(nd+1))

K , State-space matrices of the controller.

C
((nd+1)×n)
K ,D((nd+1)×(nd+1))

K
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