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Abstract

Leaf morphology is critical for the survival of plant species. After a leaf primordium is 
initiated at the flank of shoot apical meristem (SAM), the development along the medial‐
lateral direction enlarges the leaf‐blades, leading to the increase of photosynthetic activi‐
ties. Thus, the revelation of mechanisms that control development across a leaf is quite 
important for plant breeding. A variety of narrow leaf mutants have been identified in 
the grass family, which includes particularly important crops in the world. Here, the 
molecular mechanisms underlying the leaf development in the medial‐lateral direction 
are discussed as we introduce the three major groups of narrow leaf mutants in the grass 
family: (1) auxin‐related mutants, (2) cellulose synthase‐like D (CSLD)‐related mutants, 
and (3) polarity‐related mutants. The results obtained from these analyses could be 
directly applied to the breeding of major cereal crops such as maize, rice, and barley; 
therefore, they could contribute to the increase of food production.
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1. Introduction

Leaves are the major photosynthetic organs in plants. The light‐capture efficiency significantly 
differs depending on the leaf shapes, angles, and arrangements in the canopy. Steeper leaf angle 
allows more light to penetrate to the lower leaves, leading to the increase of carbon gain through 
assimilation [1]. To avoid self‐shading, leaf arrangement (phyllotaxis) is highly regulated by the 
plant hormone auxin [2, 3]. Since carbohydrates used in living activities are largely derived from 
the photosynthesis in plants, leaf morphology is critical for the survival of plant species.

A leaf primordium is initiated at the flank of shoot apical meristem (SAM), in which cells are 
maintained an indeterminate state by class I knotted1‐like homeobox (KNOX) genes. The Arabidopsis 
thaliana genome includes four class I KNOX genes; shoot meristemless (STM), brevipedicellus 
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(BP), KN1‐like in Arabidopsis thaliana2 (KNAT2), and KNAT6 [4]. STM is expressed throughout 
the SAM and induces cytokinin biosynthesis via isopentenyl transferase7 (IPT7) activation and 
negatively regulates gibberellin biosynthesis via GA 20‐oxidase1 (GA20ox1) repression [5]. The 
resulting high cytokinin and low gibberellin ratio promotes meristem maintenance [6]. Such 
STM expression is downregulated by plant hormone auxin [2, 3]. Auxin is unique in its polar 
transportation mediated by influx carriers represented by AUXIN1 (AUX1) and LIKE‐AUX1 
(LAX) proteins, and efflux carriers represented by PIN‐FORMED (PIN) and ATP‐binding cas‐
sette B (ABCB) proteins [7]. Once transported to SAM, auxin flows to the peripheral young leaf 
primordia, creating an auxin maximum in the region where leaf primordia do not exist in the 
meristem. Such auxin localization downregulates STM expression, leading to the low cytokinin 
and high gibberellin ratio, which promote the switch from an indeterminate to a determinate 
state [8]. The loss‐of‐function of PIN1 results in the malformed leaf development such as fused 
or cup‐shaped leaves, suggesting that localized auxin accumulation in the meristem determines 
the radial position of leaf initiation [9].

In SAMs, STM also downregulates the expression of the MYB transcription factor asymmet‐
ric leaves1 (AS1) and lateral organ boundaries domain (LBD) transcription factor AS2. When 
STM is repressed due to the auxin localization, AS1 and AS2, released from the negative 
regulation of STM, act together as a heterodimer to repress the expression of BP, KNAT2, 
and KNAT6 to prevent cell fate from returning to meristem [10–12]. The loss‐of‐function 
of AS1 resulted in the malformation of leaves due to the ectopic BP expression, which 
was enhanced with the additional loss‐of‐function of auxin resistant1 (AXR1) encoding a 
subunit of the related to ubiquitin1 (RUB1) activating enzyme that affects auxin responses 
[13]. These results suggest that the expression of AS1 together with auxin localization 
plays a pivotal role in conferring leaf fate and promoting leaf development. Interestingly, 
slight KNOX expression remains in leaf primordia in species with compound leaves [14]. 
In tomato, the class I KNOX genes tomato knotted1 (TKN1) and TKN2 are expressed in young 
leaf primordia [15, 16]. The repression of TKN activity quickens the transition of the leaf 
primordia from the initiation to the secondary morphogenesis, suggesting that KNOX pro‐
teins are involved in the delay of leaf maturation and enable leaflet formation within leaf 
primordia [16].

The morphogenesis of sophisticated leaf organs with high reproducibility is achieved 
through the development in accordance with three axes; the proximal‐distal, adaxial‐abaxial, 
and medial‐lateral directions (Figure 1A–E) [8, 17]. The development along the medial‐lat‐
eral direction enlarges the leaf‐blades, leading to the increase of photosynthetic activities. 
Thus, the revelation of developmental mechanism along the medial‐lateral direction is quite 
important for plant breeding. So far, a variety of narrow leaf mutants have been identified 
in the grass family, which includes particularly important crops in the world. The results 
obtained from these analyses could be directly applied to the breeding of major crops such as 
maize, rice, and barley; therefore, they could contribute to the increase of food production. In 
fact, erect and narrow‐leafed rice mutants led to the higher photosynthetic CO2 uptake and 
improved yield in dense planting [18]. Recently, it was revealed that the Quantitative Trait 
Locus (QTL) controlling flag leaf morphology and photosynthetic activity were allelic to the 
causal gene for narrow leaf mutant in rice, suggesting the availability of narrow leaf genes 
for breeding high‐yield varieties [19–23].
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Here, the molecular mechanisms underlying the leaf development in medial‐lateral direc‐
tion are discussed as we introduce the three major groups of narrow leaf mutants in grass 
family: (1) auxin‐related mutants, (2) cellulose synthase‐like D (CSLD)‐related mutants, and 
(3) polarity‐related mutants.

Figure 1. The shoot structure of normal barley (KN29). (A) A barley seedling at the second leaf stage. The leaf stage is 
defined by the number of fully expanded leaves. The first to third leaves are labeled. The leaf blade, leaf sheath, and 
lamina joint in the first leaf are indicated. (B) Close‐up of the lamina joint in the second leaf. The ligule and auricle are 
pointed by arrows. (C) A cross section of the medial region in the second leaf blade. The section is double‐stained in 
safranin and fast green. The lignified tissue is stained in red by safranin. “sc” indicates sclerenchymatous cells. (D) Close‐
up of the central vascular bundle in (C). “xy” and “ph” indicate xylems and phloems, respectively. (E) The epidermal 
cells of the leaf margin in the second leaf blade. Arrow heads indicate the sawtooth hairs in the leaf margin. (F) A 
shoot apex of barley seedling at the second leaf stage. Matured leaves and leaf primordia are removed. The sixth leaf 
is initiating from the basal part of shoot apical meristem (SAM). Barley is unique in that leaf ridge formation precedes 
leaf primordium development. (G) A cross section of the shoot apex in barley seedling at the second leaf stage. The leaf 
positions (third to sixth) and the leaf primordial stages (P1–P4) are shown in the figure. Bars = 5 cm (A), 5 mm (B), 200 
μm (C, G), 50 μm (D), 100 μm (E), 1 mm (F).

Narrow Leaf Mutants in the Grass Family
http://dx.doi.org/10.5772/intechopen.68794

5



2. Auxin‐related narrow leaf mutants

Auxin is a fundamental plant hormone and regulates a variety of plant growth and develop‐
ment. All parts of the young plant such as cotyledons, expanding leaves, and root tissues can 
potentially produce auxin although the youngest leaves exhibit the highest biosynthetic capac‐
ity [24–26]. Auxin is unique in its polar transportation (polar auxin transport (PAT)), as we men‐
tioned above, mediated by influx carriers and efflux carriers [7]. The direction of auxin flow is 
the consequence of asymmetric localization of these carriers at plasma membrane [27, 28]. The 
resulting auxin localization within organs plays pivotal roles in phyllotactic patterning [29, 30], 
organogenesis [9, 31, 32], embryogenesis [33, 34], tropic response [35], and apical dominance 
[36]. At the cellular level, auxin regulates cell division, cell elongation, and cell differentiation 
[7, 37].

The predominant form of auxin is indole‐3‐acetic acid (IAA). Genetic and biochemical analy‐
ses indicated that tryptophan (Trp) is the main precursor of IAA in plants, and four bio‐
synthetic pathways for IAA from Trp have been assumed [38–40]. Among IAA biosynthetic 
enzymes revealed so far, the most important biosynthetic enzymes are the tryptophan ami‐
notransferase of arabidopsis (TAA) family of aminotransferases and the YUCCA (YUC) fam‐
ily of flavin‐containing monooxygenases [41, 42]. TAA1 catalyzes the conversion of Trp to 
indole‐3‐pyruvic acid (IPA) in the initial step of the IPA pathway, and YUC catalyzes the 
conversion of IPA to IAA, downstream of TAA, in arabidopsis [40, 42–45]. The inactivation of a 
single TAA or YUC gene showed no obvious defects, indicating overlapping functions among 
TAA or YUC family members. On the other hand, the simultaneous inactivation of TAA1 and 
its close homologs, TAA‐related1 (TAR1) or TAR2 (Figure 2A), or inactivation of two or more 
YUC genes resulted in multiple growth defects together with a severe reduction in IAA level 
[43, 46]. Therefore, the IPA pathway, catalyzed by TAA and YUC, is considered to be the 
major auxin biosynthetic pathway in Arabidopsis [40].

The importance of the IPA pathway in IAA biosynthesis is also demonstrated in grass family. 
In maize, loss‐of‐function of vanishing tassel2 (VT2) and sparse inflorescence1 (SPI1), co‐ortholog 
of TAA1 and YUC in maize, respectively (Figure 2), caused severe barren inflorescences and 
semidwarf vegetative phenotypes with fewer leaves together with the reduction in IAA con‐
tent [47, 48]. Similar reduction in IAA levels was shown in the loss‐of‐function of fish bone (FIB) 
and narrow leaf7 (NAL7), co‐ortholog of TAA1 and YUC in rice, respectively (Figure 2) [49, 50]. 
Thus, the IPA pathway seems to be the major IAA biosynthetic pathway in plants.

The reduction in IAA levels gives rise to pleiotropic organ malformation together with severe 
narrow leaf phenotype in rice. Tryptophan deficient dwarf1 (TDD1) encodes a protein homolo‐
gous to the anthranilate synthase β‐subunit, which catalyzes the initial step of the Trp biosyn‐
thesis pathway [51]. TDD1mutant is embryonic lethal because of a failure to develop most 
organs during embryogenesis. Regenerated TDD1 plants exhibit pleiotropic malformations 
including dwarfing, narrow leaves, short roots, and abnormal flowers, together with a reduc‐
tion in Trp and IAA content. Trp feeding and moderate expression of OsYUC1 rescued the 
mutant phenotypes, indicating that abnormal phenotypes of TDD1 were caused mainly by Trp 
and IAA deficiency [51]. The loss‐of‐function of constitutively wilted 1 (COW1), which encodes 
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Figure 2. Phylogenetic tree of proteins involved in the IPA pathway. (A) TAA‐related proteins in rice (FIB and FIB‐
like), maize (VT2 and VT2‐like), and Arabidopsis thaliana (TAA1 and TAR1‐4). (B) YUCCA‐related proteins in rice (Os), 
maize (Zm), and Arabidopsis thaliana (At).
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OsYUC8 (Figure 2B), was isolated from TOS17 and T‐DNA insertional rice mutants [52]. 
COW1mutants exhibited narrow leaves and a rolled leaf phenotype, which is likely attribut‐
able to insufficient water supply due to the small root‐to‐shoot ratio. Fujino et al. [49] identified 
another allele of COW1, narrow leaf 7 (NAL7). The NAL7 mutant shows a similar but milder 
phenotype compared with COW1, and the IAA content in NAL7 was reduced compared to the 
wild type. In addition, overexpression of NAL7 cDNA gave rise to overgrowth and abnormal 
morphology of the root, which was likely attributable to the overproduction of auxin. These 
results suggested that NAL7/OsYUC8 is also involved in auxin biosynthesis. The importance 
of TAA gene in IAA biosynthesis in rice was demonstrated by fish bone (FIB) mutant [50]. FIB 
exhibited pleiotropic abnormal phenotypes including dwarfing, narrow and adaxially rolled 
leaves with large lamina joint angles, abnormal vascular development, and lack of crown and 
lateral roots. In addition, FIB also showed lack of gravitropism and aberrant phyllotaxy devi‐
ated from the normal distichous one. Map‐based cloning revealed that FIB encodes co‐ortho‐
log of TAA1 in rice (Figure 2A). Interestingly, loss‐of‐function of FIB resulted in not only the 
reduction in IAA level but also higher sensitivity to IAA and lower PAT activity. These results 
suggest that auxin biosynthesis, transport, and sensitivity are interrelated, which might be 
attributable to the pleiotropic abnormal phenotypes of FIB [50]. Rice genome includes 2 and 
14 genes belong to the TAA and YUC families, respectively (Figure 2) [53]. While the inactiva‐
tion of a single TAA or YUC gene showed no obvious defects in arabidopsis, distinct abnormal 
phenotypes were appeared in FIB or COW1/NAL7 mutants in rice, suggesting that functional 
redundancy among TAA or YUC genes is less prevalent in rice than in Arabidopsis.

In contrast, rice narrow leaf1 (NAL1) encodes a trypsin‐like serine and cysteine protease, 
whose relationship between auxin remains unknown, but NAL1 mutant showed narrow 
leaves, dwarfing, and defective vascular patterns together with reduced PAT activity [54]. 
Surprisingly, several agronomic QTLs involved in flag leaf width (qFLW4; [19], WFL; [23]), 
photosynthesis rate (GPS; [21]), flag leaf shape (qLSCHL4; [22]), and spikelet number (SPIKE; 
[20]) were allelic to NAL1. The increased yield in indica rice varieties, which introduced these 
QTLs, suggests that NAL1 is available in plant breeding. The latest study uncovered that 
NAL1 functions in the regulation of cell division during leaf primordia initiation [55]. In NAL1 
mutant, expression of several G1‐ and S‐phase specific genes were reduced, suggesting that 
NAL1 affects cell‐cycle regulation. In addition, the reduced expressions were also shown in 
PIN1, three auxin response factor ARF genes, and three YAB genes, but the expression of YUC 
genes were comparable to those of wild type. These results indicated that the inactivation of 
NAL1 affects auxin transport and auxin response but not auxin biosynthesis [55].

Overall, auxin‐related narrow leaf mutants exhibit pleiotropic abnormal phenotypes other than 
the reduction in leaf width. The representative phenotypes seem to be appeared in vascular 
patterning and root growth since auxin plays critical role in the development of these organs.

3. CSLD‐related narrow leaf mutants

Cell walls are essential structures surrounding plant cells. While cells are expanding, primary cell 
walls fulfill the support and barrier functions. After cell expansions are completed, secondary cell 
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walls are formed between primary walls and plasma membranes, giving additional strength to 
cells. Cell wall is composed of polysaccharides, proteins, and phenolic compounds. Classically, 
polysaccharides are classified into cellulose, hemicelluloses, and pectins [56]. Cellulose synthase 
(CesA) protein contains a zinc finger domain at the N‐terminus, eight transmembrane domains, 
and a central catalytic domain known as “D_D_D_QxxRW” motif. Although the mechanism by 
which CesA creates β‐1,4‐glucan chain is not fully revealed, it is plausible that glucan chain syn‐
thesized by the catalytic domain in the cytoplasm goes out of plasma membrane through the pores 
formed by the transmembrane domain [57]. It is likely that the zinc finger domain at the N‐ terminus 
is involved in CesA protein dimerization, leading to the higher‐order structures [58, 59].

Based on the sequence similarity to CesA genes, a large superfamily of at least 41 cellulose 
synthase‐like (CSL) genes were found in the Arabidopsis thaliana genome [60]. They were clas‐
sified into six subfamilies (CSLA, B, C, D, E, and G), and subsequent studies identified three 
additional CSL subfamilies (CSLF, H, and J) [61, 62]. CSL proteins contain sequence motifs 
that are characteristics of β‐glycosyltransferases. The only difference of CSLs from CesAs is 
the lack of the zinc finger domains at the N‐terminus, which seems to be particularly impor‐
tant to form higher‐order structures. In addition, most CSL proteins appear to be localized not 
in the plasma membrane but in the Golgi, where hemicellulose synthesis takes place. From 
these characteristics, CSL genes are predicted to catalyze the biosynthesis of noncellulosic 
polysaccharides [60]. As far as we know, the first biochemical evidence was provided by the 
soybean somatic embryos, in which expression of guar CSLA candidate cDNA gave rise to 
the enhanced mannan synthase activity [63]. Subsequent studies demonstrated that the CSLA 
genes encode (gluco)mannan synthases [64, 65], and that the CSLF and CSLH genes encode 
mixed linkage glucan synthases [66, 67]. CSLC genes were predicted to be involved in the 
xyloglucan synthesis [68], but recent study reported that some CSLC genes of barley are tar‐
geted to the plasma membrane, suggesting that the CSLC subfamily contains more than one 
type of polysaccharide synthase [69].

The uneven distribution of CSL genes implies how CSL subfamilies have been evolved in 
parallel with the diversification of plant species. While CSLB and CSLG subfamilies are found 
only in eudicots, CSLF, CSLH, and CSLJ subfamilies are specific to Poaceae. Particularly, CSLJ 
subfamily is unique in that it is only found in certain grasses, such as barley, wheat, sorghum, 
and maize, but not in rice or Brachypodium [62]. In contrast, CSLD subfamily is commonly 
found in all land plants, and show the highest similarity to CesA family among CSL subfami‐
lies at sequence levels. The small number of introns and the gene structure diversity within 
the subfamily imply the possibility that CSLD is the oldest gene family in the cellulose syn‐
thase superfamily [60, 70]. Genome database survey revealed that CSLD subfamily contains 
six Arabidopsis genes, five maize genes, five rice genes, three barley genes, five sorghum genes, 
and six Brachypodium genes, and subsequent phylogenetic analysis showed that they are fur‐
ther classified into three clades (Figure 3) [71, 72]. The first clade including AtCSLD1 and 
AtCSLD4 is specifically expressed in pollens and involved in pollen tube elongation [73], and 
the second clade including AtCSLD2, AtCSLD3, OsCSLD1, and ZmCSLD5 is highly expressed 
in root tissues and involved in root hair development [73–77]. While these two clades are 
commonly involved in “tip‐growing” development, the loss‐of‐function of the third clade 
including AtCSLD5, OsCSLD4, and ZmCSLD1 exhibited different phenotypes.
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In rice, inactivation of OsCSLD4 resulted in distinct narrow leaf phenotype. So far, several 
narrow leaf genes such as narrow leaf and dwarf 1 [78], narrow and rolled leaf 1 [79], Oscd1 [80], 
slender leaf 1 [72], dwarf and narrowed leaf 1 [81], and dwarf and narrow leaf 3 [82] were allelic 
to OsCSLD4. The mutants commonly exhibited narrow and rolled leaves and dwarfing phe‐
notypes. The reduction in leaf‐blade width and plant height was clearly attributable to the 
decrease of cell number, suggesting that OsCSLD4 promotes cell proliferation activity. But 
if so, why is leaf‐blade length less affected by the mutation than that of leaf‐blade width? 
This question was solved by the increase of cell length in OsCSLD4 mutant. Plants are able to 
compensate for a reduction in cell number with an increase in cell size [83], and the degree of 
compensation may differ depending on the direction. In fact, the number of cells was equally 
reduced in both length and width direction in OsCSLD4 [72]. The expression analysis revealed 
that OsCSLD4 is specifically expressed in M‐phase cells in all developing organs, and loss‐of‐
function of OsCSLD4 resulted in the alteration of cell‐cycle regulation. Interestingly, OsCSLD4 
included cells with 4C nucleus while such cells were not detected in normal rice. These results 
suggested that OsCSLD4 plays a pivotal role in M‐phase to progress cell proliferation [72].

The inactivation of ZmCSLD1 also results in the narrow leaf and fine stem phenotype mainly 
due to the decrease of cell number [71]. In addition, wart‐like cell clusters were formed on the 
leaf surface. The warts were attributable to the defects of cell division in leaf development, and 

Figure 3. Phylogenetic tree of CSLD‐related proteins in rice (Os), maize (Zm), barley (Hv), sorghum (Sb), Brachypodium 
distachyon (Bd), and Arabidopsis thaliana (At).
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disrupted cross‐wall formations were frequently observed in epidermal cells. Such defective 
developments of cell wall often appeared in cytokinetic mutants of Arabidopsis, such as knolle 
[84], korrigan [85], and hinkel [86], in which impairment of cytokinesis was caused by a failure 
of cell‐plate formation. Considering the nature of CSLD as a wall‐synthesizing enzyme, the 
M‐phase specific expression, and the defective cell wall development in the mutant, it is spec‐
ulated that CSLD may be involved in cell‐plate formation. The existence of CSLD genes in all 
land plants also suggests the fundamental function of this subfamily. Recently, it was revealed 
that transiently expressed AtCSLD5 is involved in mannan synthesis in tobacco leaves [87]. 
Distantly related CSLA subfamily also exhibits mannan synthase activity, but CSLA proteins 
readily use Guanosine diphosphate (GDP)‐glucose as well as GDP‐mannose and hence effi‐
ciently synthesize glucomannans [64, 88]. Since the mannosyltransferase activity of AtCSLD5 
was reduced by adding GDP‐glucose together with GDP‐mannose, CSLD subfamily is 
involved in a different kind of mannan synthesis from that catalyzed by CSLA subfamily [87]. 
Although mannans have been well studied as storage component, little information has been 
accumulated in relation to cytokinesis. Further analysis will reveal the detailed mechanism of 
plant cytokinesis and novel functions of hemicelluloses.

Overall, CSLD‐related narrow leaf mutants exhibit a decrease in the whole plant size other 
than the reduction in leaf width. These phenotypes are directly attributable to the reduced cell 
proliferation activity, for CSLDs of the third clade are predicted to fulfill a function closely 
related to cytokinesis.

4. Polarity‐related narrow leaf mutants

Most plant leaves are asymmetrical in all directions. Grass family leaves include leaf‐blade 
in the distal side, leaf‐sheath in the proximal side, and lamina‐joint between the leaf‐blade 
and leaf‐sheath. The bulliform cells, which curl leaf‐blades to prevent over transpiration, and 
xylems are formed only on the adaxial side, and the phloems on the abaxial side. The midrib, 
which functions as a physical support for the leaves, and ligule are formed in the medial side, 
and the sawtooth hairs and auricle in the lateral side (Figure 1A–E) [89]. For the construction of 
such a sophisticated organ, the proximal‐distal, adaxial‐abaxial, and medial‐lateral polarities 
must be constructed as soon as cells acquire leaf fate in SAM (Figures 1F and G).

Among the three polarities, the molecular mechanism of adaxial‐abaxial polarity is well 
studied using Arabidopsis. Through the loss‐of‐function and/or gain‐of‐function analyses, it 
has been revealed that adaxial identity is regulated by class III homeodomain‐leucine zipper 
(HD‐Zip) family genes and asymmetric leaves2 (AS2), and that abaxial identity by yabby (YAB) 
family genes, kanadi (KAN) family genes, and auxin response factor (ARF) family genes [90]. 
The adaxial or abaxial specific expression of these genes is crucial for the establishment of the 
organ polarity, and these regulators are interacting antagonistically [17, 90]. In addition, small 
RNAs are also involved in the negative regulation of these regulators to maintain the expres‐
sion regions [90–92]. In rice, the loss‐of‐function of shallot‐like 1 (SLL1)/rolled leaf 9 (RL9), which 
encodes SHAQKYF class MYB transcription factor belonging to the KAN family, resulted in 
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the suppression of abaxial development while enhanced expression led to the abaxialized leaf 
phenotypes [93, 94]. Moreover, in maize, the accumulation of miR166, which is involved in the 
cleavage of class III HD‐Zip transcripts, defined the expression region of the rolled leaf 1 (RLD1) 
belonging to the class III HD‐Zip family, promoting the establishment of adaxial‐abaxial polar‐
ity [95]. Despite the morphological differences from dicots, these genes homologous to KAN or 
class III HD‐Zip seem to fulfill similar regulation in grass family.

While detail genetic regulators of proximal‐distal polarity remain unclear in Arabidopsis, mor‐
phological, and molecular analyses are proceeding in grass families for the convenience of 
distinct organ development along the proximal‐distal axis. A number of dominant mutations 
which specifically affect proximal‐distal patterning have been characterized in maize [96]. The 
dominant mutant Knotted1 (Kn1) was characterized by sheath‐like cells in the leaf‐blade [97]. 
KN1 encodes a homeodomain protein, and KN1 transcripts were localized in the meristem 
but excluded from the leaf initial cells [98, 99]. However, KN1 proteins were detected out‐
side of the KN1‐transcript localized area, suggesting the noncell‐autonomous nature of KN1 
gene [100]. In leaf primordia, KN1 proteins were accumulated in the most proximal part, 
and ectopic expression of KN1 in the distal leaf‐blade gave rise to alteration into sheath cell 
identity [101, 102]. These results suggested that KN1 is involved in the establishment of proxi‐
mal identity in leaf development. Ectopic expressions of KN1‐like homeobox (KNOX) genes 
also resulted in cell fate alterations in maize, barley, and Arabidopsis, suggesting the highly 
conserved function of KNOX genes [103–105]. On the other hand, PIN1 proteins which medi‐
ate polar auxin transport (PAT) are highly expressed in the distal ends of developing leaf 
primordia. Auxin plays pivotal roles in leaf development as we mentioned above, and PIN1 
creates an auxin maximum in the distal end of leaf primordium [31, 106]. The subsequent 
canalization through the interior of leaf primordia leads to the development of primary vas‐
cular strand. Thus, the auxin gradient along the proximal‐distal axis is likely to play pivotal 
role in leaf development. Maize liguleless1 (LG1) and liguleless2 (LG2) mutants lack both ligule 
and auricle between leaf‐blade and leaf‐sheath [107–109]. It was revealed that LG1 encodes 
a squamosa‐promoter binding protein, and that LG2 encodes a basic leucine zipper protein 
[110, 111]. While LG1 is specifically expressed in ligule initiating area, LG2 shows earlier and 
broader expression pattern than that of LG1 [112, 113]. The phenotype of lg1 lg2 double mutant 
suggested that they act in the same pathway, implying the possibility of interaction between 
LG1 and LG2 [109]. In addition, other liguleless mutants have been identified such as LG3 and 
LG4, which encode class I KNOX genes [114, 115]. These findings promote the construction of 
a hypothetical model of leaf‐blade‐sheath boundary formation [113].

Compared with other polarities, the molecular mechanism of the medial‐lateral polarity is 
less understood. So far, it was revealed that drooping leaf (DL) plays pivotal role in the develop‐
ment of medial organs in rice. DL encodes a putative transcription factor belonging to the YAB 
family, and DL mutants showed defective development of a midrib in the leaf, leading to the 
drooped leaf phenotype [116]. The DL transcripts were localized in the central region of leaf 
primordia, and over‐expression of DL resulted in the ectopic formation of midrib‐like struc‐
tures in the lateral regions as well as in the central region of the leaf. In contrast, the develop‐
ment of leaf lateral domains is highly regulated by wuschel‐related homeobox (WOX) genes. In 
maize, the loss‐of‐function mutations in both narrow sheath1 (NS1) and NS2 resulted in the 
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significant reduction in leaf width due to the lack of marginal regions in leaves [117–119]. 
NS1 and NS2 double mutants fail to downregulate KNOX proteins in the premarginal regions 
of leaf primordia, leading to the deletion of marginal region from the primordial stages [117, 
119]. NS1 and NS2 encode the duplicated WOX3 genes, and NS transcripts are accumu‐
lated in the marginal edges of initiating leaf primordia. From these results, it was suggested 
that NS genes play pivotal roles in the recruitment of leaf founder‐cells by downregulating 
KNOX accumulation [120–122]. Genes belonging to WOX3 family are largely classified into 
two clades (Figure 4), and the NS‐related clade includes narrow leaf2 (NAL2) and NAL3 of rice, 
narrow leafed dwarf 1 (NLD1) of barley, and pressed flower1 (PRS1) of Arabidopsis [123].

The nucleotide sequences of NAL2 and NAL3 are identical, corresponding with the recent 
duplication of a large chromosomal segment in chromosomes 11 and 12 [124]. NAL2 /3 and 
NLD1 mutants show the similar abnormal phenotypes to NS1 and NS2 such as distinct nar‐
row leaf phenotype and defective marginal development, which are attributable to the lack of 
marginal regions (Figure 5) [123, 125, 126]. The expression patterns of NAL2/3 and NLD1 are 
also similar to that of NS1 NS2, suggesting the conserved function of NS‐related genes in the 
development of lateral organs. Interestingly, no distinct abnormal phenotypes were observed 
in the leaf of PRS1 mutant except for the deletion of the proximal lateral stipules [117]. This 
result supported the leaf‐zonation model that the lower leaf zone of bifacial monocot leaves 
corresponds with the basal part of bifacial eudicot leaves including stipules [127]. It is, there‐
fore, considered that NS‐related WOX3 genes are involved in the development of the lateral 
domain in the lower leaf zone.

Figure 4. Phylogenetic tree of WOX3‐related proteins in rice (Os), maize (Zm), barley (Hv), sorghum (Sb), Brachypodium 
distachyon (Bd), and Arabidopsis thaliana (At).
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The width of PRS leaves was significantly reduced by the additional mutation of WOX1. 
WOX1 is unique in that it belongs to the same clade of the WOX3/PRS family but seems to be 
absent in grasses (Figure 4) [128, 129]. WOX1 and PRS double mutants exhibit not only the 
loss of leaf marginal tissues but also the confused adaxial‐abaxial identity at leaf marginal 
regions [129, 130]. These results suggested that leaf margin functions as an adaxial‐abaxial 
boundary, where adaxial and abaxial regulators are downregulated by WOX genes [90].

While the medial‐lateral polarity is directly related to leaf width, mutation or over‐expression 
of the genes regulating the proximal‐distal or adaxial‐abaxial polarity can also result in the 
reduction in leaf width together with the alteration of organ polarities. Recessive mutant rough 
sheath 2 (RS2) of maize exhibits narrow/bladeless leaves with a disruption of the blade‐sheath 
boundary [131]. In RS2 mutant, class I KNOX proteins are ectopically accumulated, and it was 
revealed that RS2 encodes an MYB‐domain protein, an ortholog of AS1 in Arabidopsis. Thus, 
it is likely that RS2 is involved in the proximal‐distal patterning by downregulating KNOX 
expression. Liguleless (LG) genes play pivotal role in the establishment of the boundary between 
leaf‐blade and leaf‐sheath in the proximal‐distal axis. Recently, another LG gene liguleless nar‐
row (LGN) was identified, and its semidominant mutant (LGN‐R) showed narrow leaves with 
greatly reduced auricle and ligule and indefinite blade‐sheath boundary [132]. LGN encodes 
a grass‐specific kinase, which is broadly expressed in maize organ but affects LG1 and LG2 
expression. The dominant mutant Wavy auricle in blade 1 (WAB1) shows narrow leaves with 

Figure 5. The narrow leaf phenotype of barley narrow leafed dwarf1 (NLD1) mutant. (A–C) The whole shoots (A), the 
leaf‐blades (B), and the lamina joints (C) in matured leaves of wild‐type (KN29) and NLD1.b mutant. The auricles are 
pointed by arrows in (C). Auricles are significantly diminished in NLD1.b due to the defective development of the lateral 
domain. (D) The epidermal cells of the leaf margin in NLD1.b leaf‐blade. Sawtooth hairs are rarely formed in the mutant 
unlike wild‐type (Figure 1E). Bars = 1 cm (B, C), 200 μm (D).
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ectopic auricle and extended sheath in leaf‐blade [112, 133]. In contrast to LGN‐R, LG1 was 
misexpressed in WAB1, and recently it was revealed that WAB1 encodes a teosinte‐branched1/
cycloidea/PCF (TCP) transcription factor, which is necessary for LG1 expression [134]. These 
genes play a pivotal role in the establishment of proximal‐distal polarity, but affect leaf width 
indirectly. Thus, it was considered that proximal‐distal patterning may link to medial‐lateral 
growth.

On the other hand, Rice SLL1/RL9 encodes KAN transcription factor as we mentioned above, 
and sll1/rl9 mutants show rolled leaf phenotypes due to the defective development of the 
sclerenchymatous cells on the abaxial side together with the reduction in leaf width [93, 94]. 
Similar defective development was observed in semi‐rolled leaf 2 (SRL2), which exhibits narrow 
incurved leaves due to the defective development of sclerenchymatous cells on the abaxial 
side [135]. SRL2 encodes a novel plant‐specific protein of unknown biochemical function, 
and highly expressed in the abaxial cell layer in the leaf sheath. However, SLL1/RL9 expres‐
sion was unaffected in SRL2, and SRL2 SLL1 double mutants showed more severe defective 
development of sclerenchymatous cells on the abaxial side together with the much narrower 
leaf phenotype than single mutants [135]. These results suggest that SLL1/RL9 and SRL2 func‐
tion in distinct pathways to regulate the abaxial development. Overexpression of OsHOX32, 
a member of class III HD‐Zip family, resulted in narrow and adaxially rolled leaves due to the 
reduction in bulliform cell number [136]. Among the six OsYAB genes, OsYAB1, OsYAB2, and 
OsYAB6 were upregulated while OsYAB3, OsYAB4, and OsYAB5 were downregulated in the 
overexpression plants, suggesting the direct or indirect interaction between OsHOX32 and 
OsYAB genes. Similar defective development was observed by the overexpression of OsLBD3‐7, 
which shows high similarity to AS2 of Arabidopsis. OsLBD3‐7 overexpression plants exhibit 
narrow and adaxially rolled leaves due to the reduction in bulliform cell size and number 
[137]. Since the negative regulators of bulliform cell development were upregulated in overex‐
pression plants, it was suggested that OsLBD3‐7 positively regulate these negative regulators 
in leaf development. The marginal expressions of NS genes are disappeared in maize ragged 
seedling 2 (RGD2) mutant, which exhibits thread‐like narrow leaves [138]. RGD2 encodes argo‐
naute7 (AGO7)‐like protein, which is involved in the synthesis of trans‐acting short‐interfering 
RNA (ta‐siRNA) derived from TAS3 in Arabidopsis. So far, several mutants for TAS3 ta‐siRNA 
pathway have been identified including AGO7‐related genes (RGD2 in maize; [138], shootless4 
(SHL4)/shoot organization2 (SHO2) in rice; [139]), SGS3‐related gene (leafbladeless1 [LBL1] in 
maize; [140, 141]), RDR6‐related gene (SHL2 in rice; [142, 143]), and DCL4‐related gene (SHO1 
in rice; [143, 144]). Although maize and rice leaves are different morphologically, the loss‐of‐
function of these genes commonly gave rise to thread‐like narrow leaves which showed defec‐
tive adaxial‐abaxial and medial‐lateral polarities. TAS3 ta‐siRNA is expressed on the adaxial 
side of developing leaf primordia and restricts the expression region of abaxial factor ARF3a 
and miR166 [141]. Since miR166 restricts the expression region of class III HD‐Zip genes, inac‐
tivation of TAS3 ta‐siRNA pathway results in the upregulation of ARF3a and miR166, and 
downregulation of class III HD‐Zip genes, leading to the abaxialization of leaf. Such a severe 
abaxialization might disturb the establishment of medial‐lateral polarity. In Arabidopsis, triple 
mutation of YAB genes (FIL YAB3 YAB5) has resulted in the thread‐like narrow leaves which 
showed defective adaxial‐abaxial and medial‐lateral polarities [145, 146]. These results suggest 
that the establishment and/or development of the medial‐lateral polarity is regulated down‐
stream of the adaxial‐abaxial polarity.
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Overall, polarity‐related narrow leaf mutants exhibit distinct reduction in leaf‐blade width 
together with the disruption of organ polarity. The loss‐of‐function of lateral identity is 
directly reflected in the reduction of leaf width, but the disruption of the proximal‐distal or 
adaxial‐abaxial polarities also affect the establishment or development along medial‐lateral 
axis, suggesting the interactive development between the three polarities.

5. Conclusion

The reduction in leaf width is a subtle morphological alteration, but the analyses of narrow leaf 
mutants have uncovered molecular functional diversity of the causal genes. Through a variety 
of genetic approaches, it has been demonstrated that NS‐related WOX3 genes are critical for 
the development of leaf lateral domains. Although NS‐related WOX3 transcripts are strictly 
limited within the marginal edges, the phenotypic alteration of loss‐of‐function mutants occurs 
in more broad area, suggesting the noncell‐autonomous nature of NS‐related WOX3 genes. 
This could be explained by the migration of either WOX3 protein itself or the secondary signals 
derived from the marginal cells. Recently, it was reported that barley NLD1 mutant exhibited 
malformation of commissural veins in the leaf lateral domain [123]. Since polar auxin trans‐
port plays an important role in determining vascular pattern in leaves, nld1 may include some 
abnormalities in auxin transport. Therefore, it is quite interesting whether auxin functions as 
the secondary signal of NS‐related WOX3 genes. Auxin plays pleiotropic role in plant devel‐
opment, and at the cellular level, auxin regulates cell division, cell elongation, and cell dif‐
ferentiation. In addition, it is suggested that auxin biosynthetic YUC genes are expressed in 
response to the juxtaposition of adaxial and abaxial domains [147]. Thus, auxin biosynthesis 
at the adaxial‐abaxial boundary partly contributes to leaf margin expansion, and this might 
explain the reduction in leaf width attributable to the disruption of the adaxial‐abaxial polar‐
ity. At the downstream of these mechanisms, cell proliferation activity is maintained by CSLD 
genes of the third clade. The details of plant cytokinesis are not fully understood, particularly 
as to the components of cell plate. All we covered here is just a part of well‐studied mutants, 
and there should be many hither‐to unidentified narrow leaf mutants. Further study will give 
us a novel and detailed mechanism of leaf development in the grass family.

6. Materials and methods

6.1. Plant materials

For morphological observation of barley shoot, a wild type line Kanto Nijo 29 (KN29), which 
has two‐rowed spike and covered caryopsis, and its gamma‐ray induced narrow leafed dwarf1 
(NLD1) mutant, NLD1.b, were used. To promote germination, seeds were kept at 15°C on wet 
paper for 3 days. Then, imbibed seeds were sown on soil and grown under natural conditions.

6.2. Paraffin sectioning and histological analysis

Plant samples were fixed with FAA (formaldehyde:glacial acetic acid:50% ethanol [2:1:17]) for 
24 h at 4°C for histological analysis. They were then dehydrated in a graded ethanol series, 
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substituted with 1‐butanol, and embedded in Paraplast® Plus (McCormick Scientific). The 
samples were sectioned at 8 μm thickness using a rotary microtome. For the histological analy‐
sis, sections were stained in hematoxylin or double‐stained in safranin and fast green. After 
staining, sections were mounted with Poly‐Mount® (Polysciences, Inc.) and observed with a 
light microscope.

6.3. Epidermal cell observation

The leaf‐blades were fixed with FAA (formaldehyde:glacial acetic acid:50% ethanol [2:1:17]) 
for 24h at 4°C. They were then dehydrated in a graded ethanol series. Dehydrated samples 
were incubated at 96°C in chloralhydrate dissolved in 100% ethanol until they were cleared, 
and observed with a light microscope.

6.4. Phylogenetic analysis

For the phylogenetic analysis of TAA‐, YUCCA‐, CSLD‐, and WOX3‐related genes, amino acid 
sequences were obtained from TIGR (http://rice.plantbiology.msu.edu) for rice, IPK Barley 
BLAST Server (http://webblast.ipk‐gatersleben.de/barley/) for barley, NCBI (https://www.
ncbi.nlm.nih.gov) for maize, sorghum, and Brachypodium distachyon, and TAIR (https://www.
arabidopsis.org) for Arabidopsis thaliana. As for YUCCA‐related maize proteins, amino acid 
sequences showing the highest similarity to YUCCA protein were searched using the protein 
blast in NCBI. The obtained sequences were analyzed with MEGA version 7 (available at http://
www.megasoftware.net, [148]) to create the phylogenetic trees.
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